首页> 外文期刊>Neural Computing and Applications >Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization
【24h】

Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization

机译:混合遗传算法和粒子群算法的神经网络在太阳能斯特林热机功率预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the model based on a feed-forward artificial neural network optimized by particle swarm optimization (HGAPSO) to estimate the power of the solar stirling heat engine is proposed. Particle swarm optimization is used to decide the initial weights of the neural network. The HGAPSO-ANN model is applied to predict the power of the solar stirling heat engine which data set reported in literature of china. The performance of the HGAPSO-ANN model is compared with experimental output data. The results demonstrate the effectiveness of the HGAPSO-ANN model.
机译:提出了一种基于前馈人工神经网络的粒子群优化模型(HGAPSO),用于估算太阳斯特林热机的功率。粒子群优化用于确定神经网络的初始权重。 HGAPSO-ANN模型被用于预测中国文献报道的太阳能斯特林热机的功率。将HGAPSO-ANN模型的性能与实验输出数据进行比较。结果证明了HGAPSO-ANN模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号