首页> 外文期刊>Neural Computing and Applications >Auditory brainstem response classification for threshold detection using estimated evoked potential data: comparison with ensemble averaged data
【24h】

Auditory brainstem response classification for threshold detection using estimated evoked potential data: comparison with ensemble averaged data

机译:使用估计的诱发电位数据对听觉脑干反应进行阈值检测的分类:与整体平均数据的比较

获取原文
获取原文并翻译 | 示例

摘要

Auditory brainstem response (ABR) has become a routine clinical tool in neurological and audiological assessment. ABR measurement process with ensemble averaging is very time-consuming and uncomfortable for subjects due to the more repetition of single trials. This condition also restricts the wide usability of ABR in clinical applications. Therefore, the reduction in repetitions has a great importance in ABR measurements. In this study, 488 ABR responses are used for creating two different data sets. The first set is created conventionally by ensemble averaging of 1,024 single trials for each ABR pattern. The second set is obtained from the first estimated 64 single trials of the same records for each ABRs. Estimation is realized by using a nonlinear adaptive filtering algorithm. In classification stage, a powerful classifier integrated with a feature selection algorithm is performed for each data set. In result, the classification performance for estimated ABR data with 64 repetitions is better than the classification performance of the ensemble averaged data with 1,024 repetitions. The proposed system is resulted in an accuracy of 96% for estimated ABRs. So, the proposed system can effectively be used for threshold detection in auditory assessment providing a high accuracy. While the obtained results contribute to the practical ABR usage in clinics, the great significance of it arises from the reduction in repetitions via estimation of ABRs.
机译:听性脑干反应(ABR)已成为神经和听力学评估中的常规临床工具。由于单次试验的重复性较高,具有整体平均的ABR测量过程非常耗时且不方便受试者。这种情况也限制了ABR在临床应用中的广泛使用。因此,减少重复在ABR测量中非常重要。在这项研究中,使用488个ABR响应来创建两个不同的数据集。通常,通过对每个ABR模式的1,024个单次试验进行合计平均来创建第一组。第二组是从对每个ABR的相同记录的第一批估计的64次单次试验中获得的。通过使用非线性自适应滤波算法来实现估计。在分类阶段,对每个数据集执行与功能选择算法集成的功能强大的分类器。结果,具有64个重复的估计ABR数据的分类性能要优于具有1,024个重复的整体平均数据的分类性能。所提出的系统对估计的ABR的准确性为96%。因此,所提出的系统可以有效地用于听觉评估中的阈值检测,从而提供较高的准确性。尽管获得的结果有助于临床中实际使用ABR,但其巨大意义来自通过估计ABR减少重复次数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号