首页> 外文期刊>Neural Computing and Applications >Distance metric-based time-efficient fuzzy algorithm for abnormal magnetic resonance brain image segmentation
【24h】

Distance metric-based time-efficient fuzzy algorithm for abnormal magnetic resonance brain image segmentation

机译:基于距离度量的时效模糊算法用于磁共振脑图像异常分割

获取原文
获取原文并翻译 | 示例

摘要

Image segmentation is one of the significant computational applications of the biomedical field. Automated computational methodologies are highly preferred for medical image segmentation since these techniques are immune to human perception error. Artificial intelligence (AI)-based techniques are often used for this process since they are superior to other automated techniques in terms of accuracy and convergence time period. Fuzzy systems hold a significant position among the AI techniques because of their high accuracy. Even though these systems are exceptionally accurate, the time period required for convergence is exceedingly high. In this work, a novel distance metric-based fuzzy C-means (FCM) algorithm is proposed to tackle the low-convergence-rate problem of the conventional fuzzy systems. This modified approach involves the concept of distance-based dimensionality reduction of the input vector space that substantially reduces the iterative time period of the conventional FCM algorithm. The effectiveness of the modified FCM algorithm is explored in the context of magnetic resonance brain tumor image segmentation. Experimental results show promising results for the proposed approach in terms of convergence time period and segmentation efficiency. Thus, this algorithm proves to be highly feasible for time-oriented real-time applications.
机译:图像分割是生物医学领域重要的计算应用之一。自动化计算方法是医学图像分割的高度首选,因为这些技术可避免人类感知错误。基于人工智能(AI)的技术通常用于此过程,因为它们在准确性和收敛时间方面优于其他自动化技术。模糊系统由于其高精度而在AI技术中占有重要地位。即使这些系统非常精确,收敛所需的时间也非常长。在这项工作中,提出了一种新颖的基于距离度量的模糊C均值(FCM)算法,以解决传统模糊系统的低收敛速率问题。这种改进的方法涉及输入矢量空间基于距离的降维的概念,该概念大大减少了传统FCM算法的迭代时间。在磁共振脑肿瘤图像分割的背景下探索改进的FCM算法的有效性。实验结果表明,该方法在收敛时间和分割效率方面具有良好的前景。因此,该算法被证明对于面向时间的实时应用是高度可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号