首页> 外文期刊>Journal of visual communication & image representation >Chaotic firefly algorithm-based fuzzy C-means algorithm for segmentation of brain tissues in magnetic resonance images
【24h】

Chaotic firefly algorithm-based fuzzy C-means algorithm for segmentation of brain tissues in magnetic resonance images

机译:基于混沌萤火虫算法的模糊C-均值算法用于磁共振图像中脑组织的分割

获取原文
获取原文并翻译 | 示例

摘要

Image segmentation with clustering approach is widely used in biomedical application. Accurate brain Magnetic Resonance (MR) image segmentation is a challenging task due to the complex anatomical structure of brain tissues in addition to the existence of intensity inhomogeneity, partial volume effects and noise. In this study, a spatial modified bias corrected FCM algorithm is applied to brain MRI for the purpose of segmentation into White Matter (WM), Gray Matter (GM) and Cerebrospinal fluid (CSF) in MR images. So to overcome the uncertainty caused by the above effects, a modified Fuzzy C-Means (m-FCM) algorithm for MR brain image segmentation is presented in this paper. Also FCM suffers from initialization sensitivity, to overcome this we have used chaos theory based firefly algorithm. This paper presents a novel application of FCM clustering by using Firefly algorithm with a chaotic map to initialize the population of fireflies and tune the absorption coefficient (A), for increasing the global search mobility. This algorithm is called chaotic firefly integrated Fuzzy C-means (C-FAFCM) algorithm, which embeds chaos map in the Firefly Algorithm. The proposed technique is applied to several simulated and real Tl-weighted for normal magnetic resonance brain images, taken from IBSR and BrainWeb database. The algorithm is realized by incorporating the spatial neighborhood information into the standard FCM algorithm and modifying the membership weighting of each cluster by regularizing it by Total Variation (TV) denoising. The experimental results on both simulated and real brain MRI datasets demonstrate that our proposed method (C-FAFCM) has satisfactory outputs in comparison with some other state of the art, based on FCM and non FCM based algorithms.
机译:聚类的图像分割技术已广泛应用于生物医学领域。精确的脑磁共振(MR)图像分割是一项艰巨的任务,这是因为除了存在强度不均匀,部分体积效应和噪声之外,脑组织的解剖结构复杂。在这项研究中,将空间修正的偏倚校正的FCM算法应用于脑MRI,目的是将MR图像中的白色物质(WM),灰色物质(GM)和脑脊液(CSF)分割。因此,为克​​服上述影响所带来的不确定性,提出了一种改进的模糊C-均值(m-FCM)算法,用于MR脑图像分割。 FCM还具有初始化敏感性,为了克服这一问题,我们使用了基于混沌理论的萤火虫算法。本文提出了一种利用萤火虫算法和混沌映射来初始化萤火虫种群并调整吸收系数(A)的FCM聚类的新应用,以增加全局搜索的移动性。该算法称为混沌萤火虫集成模糊C均值(C-FAFCM)算法,它将混沌映射图嵌入萤火虫算法中。所提出的技术应用于从IBSR和BrainWeb数据库获取的正常磁共振脑图像的若干模拟和真实T1加权。该算法是通过将空间邻域信息合并到标准FCM算法中并通过使用总变异(TV)去噪对其进行正则化来修改每个群集的成员资格权重来实现的。在模拟和真实大脑MRI数据集上的实验结果表明,与基于FCM和基于非FCM的算法的其他一些现有技术相比,我们提出的方法(C-FAFCM)具有令人满意的输出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号