首页> 外文期刊>Neural Computing and Applications >Recognition of driving postures by combined features and random subspace ensemble of multilayer perceptron classifiers
【24h】

Recognition of driving postures by combined features and random subspace ensemble of multilayer perceptron classifiers

机译:多层感知器分类器的组合特征和随机子空间集成识别驾驶姿势

获取原文
获取原文并翻译 | 示例

摘要

Human-centric driver assistance systems with integrated sensing, processing and networking aim to find solutions for traffic accidents and other relevant issues. The key technology for developing such a system is the capability of automatically understanding and characterizing driver behaviors. This paper proposes a novel driving posture recognition approach, which consists of an efficient combined feature extraction and a random subspace ensemble of multilayer perceptron classifiers. A Southeast University Driving Posture Database (SEU-DP Database) has been created for training and testing the proposed approach. The data set contains driver images of (1) grasping the steering wheel, (2) operating the shift lever, (3) eating a cake and (4) talking on a cellular phone. Combining spatial scale features and histogram-based features, holdout and cross-validation experiments on driving posture classification are conducted, comparatively. The experimental results indicate that the proposed combined feature extraction approach with random subspace ensemble of multilayer perceptron classifiers outperforms the two individual feature extraction approaches. The experiments also suggest that talking on a cellular phone is the most difficult posture in classification among the four predefined postures. Using the proposed approach, the classification accuracy on talking on a cellular phone is over 89 % in both holdout and cross-validation experiments. These results show the effectiveness of the proposed combined feature extraction approach and random subspace ensemble of multilayer perceptron classifiers in automatically understanding and characterizing driver behaviors toward human-centric driver assistance systems.
机译:具有集成感测,处理和联网功能的以人为本的驾驶员辅助系统旨在为交通事故和其他相关问题找到解决方案。开发这样的系统的关键技术是自动理解和表征驾驶员行为的能力。本文提出了一种新颖的驾驶姿势识别方法,该方法包括有效的组合特征提取和多层感知器分类器的随机子空间集成。已经创建了东南大学驾驶姿势数据库(SEU-DP数据库),用于培训和测试该方法。该数据集包含以下驾驶员图像:(1)握住方向盘;(2)操作变速杆;(3)吃蛋糕;(4)在蜂窝电话上交谈。结合空间尺度特征和基于直方图的特征,进行了驾驶姿势分类的保持和交叉验证实验。实验结果表明,提出的结合多层感知器分类器的随机子空间集合的特征提取方法优于两种单独的特征提取方法。实验还表明,在四种预定义姿势中,在蜂窝电话上通话是最困难的姿势。使用提出的方法,在保持和交叉验证实验中,使用手机通话时的分类准确性均超过89%。这些结果表明,所提出的组合特征提取方法和多层感知器分类器的随机子空间集合在自动理解和表征针对以人为中心的驾驶员辅助系统的驾驶员行为方面是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号