首页> 外文期刊>Neural Computing & Applications >A gradient-based sequential radial basis function neural network modeling method
【24h】

A gradient-based sequential radial basis function neural network modeling method

机译:基于梯度的顺序径向基函数神经网络建模方法

获取原文
获取原文并翻译 | 示例

摘要

Radial basis function neural network (RBFNN) is widely used in nonlinear function approximation. One of the key issues in RBFNN modeling is to improve the approximation ability with samples as few as possible, so as to limit the network’s complexity. To solve this problem, a gradient-based sequential RBFNN modeling method is proposed. This method can utilize the gradient information of the present model to expand the sample set and refine the model sequentially, so as to improve the approximation accuracy effectively. Two mathematical examples and one practical problem are tested to verify the efficiency of this method.
机译:径向基函数神经网络(RBFNN)被广泛用于非线性函数逼近。 RBFNN建模的关键问题之一是通过尽可能少的样本来提高逼近能力,以限制网络的复杂性。为了解决这个问题,提出了一种基于梯度的顺序RBFNN建模方法。该方法可以利用本模型的梯度信息来扩展样本集,并依次对模型进行细化,从而有效地提高了近似精度。测试了两个数学示例和一个实际问题,以验证该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号