首页> 外文期刊>Neural Computing & Applications >Using evolution strategy for cooperative focused crawling on semantic web
【24h】

Using evolution strategy for cooperative focused crawling on semantic web

机译:使用演化策略进行语义网络上的协作式集中爬网

获取原文
获取原文并翻译 | 示例

摘要

Conventional focused crawling systems have difficulties on contextual information retrieval in semantic web environment. In order to deal with these problems, we propose a cooperative crawler platform based on evolution strategy to build semantic structure (i.e., local ontologies) of web spaces. Mainly, multiple crawlers can discover semantic instances (i.e., ontology fragments) from annotated resources in a web space, and a centralized meta-crawler can carry out incremental aggregation of the semantic instances sent by the multiple crawlers. To do this, we exploit similarity-based ontology matching algorithm for computing semantic fitness of a population, i.e., summation of all possible semantic similarities between the semantic instances. As a result, we could efficiently obtain the best mapping condition (i.e., maximizing the semantic fitness) of the estimated semantic structures. We have shown two significant contributions of this paper; (1) reconciling semantic conflicts between multiple crawlers, and (2) adapting to evolving semantic structures of web spaces over time.
机译:常规的集中爬网系统在语义Web环境中的上下文信息检索上有困难。为了解决这些问题,我们提出了一种基于进化策略的协作爬虫平台,以构建Web空间的语义结构(即本地本体)。主要是,多个搜寻器可以从Web空间中的带注释的资源中发现语义实例(即本体片段),而集中式元搜寻器可以对多个搜寻器发送的语义实例进行增量聚合。为此,我们利用基于相似度的本体匹配算法来计算总体的语义适应度,即,将语义实例之间所有可能的语义相似度相加。结果,我们可以有效地获得估计的语义结构的最佳映射条件(即,使语义适合度最大化)。我们已经展示了本文的两个重要贡献。 (1)调和多个搜寻器之间的语义冲突,以及(2)随着时间的推移适应网络空间不断发展的语义结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号