首页> 外文期刊>Neural Computing & Applications >Applying a novel decision rule to the sphere-structured support vector machines algorithm
【24h】

Applying a novel decision rule to the sphere-structured support vector machines algorithm

机译:一种新颖的决策规则在球结构支持向量机算法中的应用

获取原文
获取原文并翻译 | 示例

摘要

The traditional sphere-structured support vector machines algorithm is one of the learning methods. It can partition the training samples space by means of constructing the spheres with the minimum volume covering all training samples of each pattern class in high-dimensional feature space. However, the decision rule of the traditional sphere-structured support vector machines cannot assign ambiguous sample points such as some encircled by more than two spheres to valid class labels. Therefore, the traditional sphere-structured support vector machines is insufficient for obtaining the better classification performance. In this article, we propose a novel decision rule applied to the traditional sphere-structured support vector machines. This new decision rule significantly improves the performance of labeling ambiguous points. Experimental results of seven real datasets show the traditional sphere-structured support vector machines based on this new decision rule can not only acquire the better classification accuracies than the traditional sphere-structured support vector machines but also achieve the comparable performance to the classical support vector machines.
机译:传统的球形结构支持向量机算法是一种学习方法。它可以通过构造具有最小体积的球体来划分训练样本空间,这些球体覆盖高维特征空间中每个模式类别的所有训练样本。但是,传统的球形结构支持向量机的决策规则无法将模糊的样本点(例如由两个以上的球形包围的样本点)分配给有效的类标签。因此,传统的球形结构支持向量机不足以获得更好的分类性能。在本文中,我们提出了一种适用于传统的球形结构支持向量机的新颖决策规则。此新的决策规则显着提高了标记歧义点的性能。七个真实数据集的实验结果表明,基于该新决策规则的传统球形结构支持向量机不仅可以获得比传统球形结构支持向量机更好的分类精度,而且还可以达到与经典支持向量机相当的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号