首页> 外文期刊>Neural Computing & Applications >Feature space versus empirical kernel map and row kernel space in SVMs
【24h】

Feature space versus empirical kernel map and row kernel space in SVMs

机译:SVM中的特征空间与经验性内核映射和行内核空间

获取原文
获取原文并翻译 | 示例

摘要

In machine-learning technologies, the support vector machine (SV machine, SVM) is a brilliant invention with many merits, such as freedom from local minima, the widest possible margins separating different clusters, and a solid theoretical foundation. In this paper, we first explore the linear separability relationships between the high-dimensional feature space H and the empirical kernel map U as well as between H and the space of kernel outputs K. Second, we investigate the relations of the distances between separating hyperplanes and SVs in H and U, and derive an upper bound for the margin width in K. Third, as an application, we show experimentally that the separating hyperplane in H can be slightly adjusted through U. The experiments reveal that existing SVM training can linearly separate the data in H with considerable success. The results in this paper allow us to visualize the geometry of H by studying U and K.
机译:在机器学习技术中,支持向量机(SV机器,SVM)是一项杰出的发明,它具有许多优点,例如,不受局部最小值的限制,可以将最大范围的边距分开不同的簇,并具有坚实的理论基础。在本文中,我们首先探索高维特征空间H与经验核图U之间的线性可分性关系,以及H与核输出K的空间之间的线性可分性关系。其次,我们研究分离的超平面之间的距离关系H,U中的SVs,并得出K中的边距宽度的上限。第三,作为应用,我们通过实验表明,可以通过U来稍微调整H中的分离超平面。实验表明,现有的SVM训练可以线性地进行分离H中的数据取得了很大的成功。本文的结果使我们能够通过研究U和K来形象化H的几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号