首页> 外文期刊>Neural Computing & Applications >Decoding ambisonic signals to irregular quad loudspeaker configuration based on hybrid ANN and modified tabu search
【24h】

Decoding ambisonic signals to irregular quad loudspeaker configuration based on hybrid ANN and modified tabu search

机译:基于混合神经网络和改进的禁忌搜索将歧义信号解码为不规则的四扬声器配置

获取原文
获取原文并翻译 | 示例

摘要

Past research has proven that a first-order B-format ambisonic signal can be used to partially reconstruct the original sound field through a collection of arbitrary positioned loudspeakers. This is achieved by setting the gain of each loudspeaker to be the weighted sum of the three components in the B-format signal. Deduction of the weighting factors (a.k.a. the decoding parameters) has been successfully accomplished with the use of the Modified Tabu Search (MTS), and later with the Heuristic Genetic Algorithm (HGA) which provides higher precision and stability. Despite the favorable outcome, both methods involve large amount of iterations and the computation time is lengthy. In this paper, we propose a scheme to overcome this problem based on the integration of Neural Network Estimation (NNE) and the MTS. Compared to HGA, the new approach is about two orders of magnitude faster, and at the same time capable of attaining similar precision in determining the decoding parameters.
机译:过去的研究证明,一阶B格式混响信号可用于通过收集任意定位的扬声器来部分重建原始声场。这是通过将每个扬声器的增益设置为B格式信号中三个分量的加权和来实现的。加权因子(又称为解码参数)的推论已通过使用改进的禁忌搜索(MTS)以及后来的启发式遗传算法(HGA)成功实现,该算法提供了更高的精度和稳定性。尽管结果令人满意,但这两种方法都涉及大量迭代,并且计算时间很长。在本文中,我们提出了一种基于神经网络估计(NNE)和MTS集成的解决方案。与HGA相比,新方法要快两个数量级,并且在确定解码参数时能够同时达到相似的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号