首页> 外文期刊>Neural Computing & Applications >Hierarchical optimization of personalized experiences for e-Learning systems through evolutionary models
【24h】

Hierarchical optimization of personalized experiences for e-Learning systems through evolutionary models

机译:通过进化模型对电子学习系统的个性化体验进行分层优化

获取原文
获取原文并翻译 | 示例

摘要

Recent researches in e-Learning area highlight the need to define novel and advanced support mechanism for commercial and academic organizations in order to enhance the skills of employees and students and, consequently, to increase the overall competitiveness in the new economy world. This is due to the unbelievable velocity and volatility of modern knowledge that require novel learning methods which are able to offer additional support features as efficiency, task relevance and personalization. This paper tries to deal with these features by proposing an adaptive e-Learning framework based on Computational Intelligence methodologies by supporting e-Learning systems’ designers in two different aspects: (1) they represent the most suitable solution, able to support learning content and activities, personalized to specific needs and influenced by specific preferences of the learner and (2) they assist designers with computationally efficient methods to develop “in time” e-Learning environments. Our work attempts to achieve both results by exploiting an ontological representation of learning environment and a hierarchical memetic approach of optimization. In detail, our approach takes advantage of a collection of ontological models and processes for adapting an e-Learning system to the learner expectations by efficiently solving a well-defined optimization problem, through a hierarchical multi-cores memetic approach.
机译:电子学习领域的最新研究强调,有必要为商业和学术组织定义新颖而先进的支持机制,以提高员工和学生的技能,从而提高新经济世界的整体竞争力。这是由于现代知识令人难以置信的速度和波动性,需要新颖的学习方法才能提供额外的支持功能,例如效率,任务相关性和个性化。本文通过在两个不同方面支持电子学习系统的设计人员,提出了一种基于计算智能方法的自适应电子学习框架,以应对这些功能:(1)它们代表了最合适的解决方案,能够支持学习内容;根据特定需求进行个性化的活动,并受学习者特定偏好的影响;(2)它们以有效的计算方法帮助设计人员开发“及时的”电子学习环境。我们的工作试图通过利用学习环境的本体表示和优化的分层模因方法来实现这两个结果。详细地说,我们的方法利用本体模型和过程的集合,通过分层多核模因方法有效地解决定义明确的优化问题,从而使电子学习系统适应学习者的期望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号