首页> 外文期刊>Neural computation >Bridging M/EEG Source Imaging and Independent Component Analysis Frameworks Using Biologically Inspired Sparsity Priors
【24h】

Bridging M/EEG Source Imaging and Independent Component Analysis Frameworks Using Biologically Inspired Sparsity Priors

机译:桥接M / EEG源成像和独立分量分析框架使用生物启发的稀疏性Priors

获取原文
获取原文并翻译 | 示例

摘要

Electromagnetic source imaging (ESI) and independent component analysis (ICA) are two popular and apparently dissimilar frameworks for M/EEG analysis. This letter shows that the two frameworks can be linked by choosing biologically inspired source sparsity priors. We demonstrate that ESI carried out by the sparse Bayesian learning (SBL) algorithm yields source configurations composed of a few active regions that are also maximally independent from one another. In addition, we extend the standard SBL approach to source imaging in two important directions. First, we augment the generative model of M/EEG to include artifactual sources. Second, we modify SBL to allow for efficient model inversion with sequential data. We refer to this new algorithm as recursive SBL (RSBL), a source estimation filter with potential for online and offline imaging applications. We use simulated data to verify that RSBL can accurately estimate and demix cortical and artifactual sources under different noise conditions. Finally,we show that on real error-relatedEEG data, RSBL can yield single-trial source estimates in agreement with the experimental literature. Overall, by demonstrating that ESI can produce maximally independent sourceswhile simultaneously localizing them in cortical space, we bridge the gap between the ESI and ICA frameworks forM/EEG analysis.
机译:电磁源成像(ESI)和独立分量分析(ICA)是M / EEG分析的两个流行且明显不同的框架。这封信表明,这两个框架可以通过选择生物学启发的源稀疏性Prover来联系。我们证明由稀疏贝叶斯学习(SBL)算法进行的ESI产生由少数有源区组成的源配置,该活动区域也在彼此最大程度地彼此最大程度地构成。此外,我们将标准SBL方法扩展到两个重要方向上的源成像。首先,我们增强了M / EEG的生成模型,包括艺术源。其次,我们修改SBL以允许具有顺序数据的有效模型反转。我们将此新算法称为递归SBL(RSBL),源估计过滤器,具有在线和离线成像应用程序的潜力。我们使用模拟数据来验证RSBL可以在不同的噪声条件下准确地估计和Demix皮质和艺术源。最后,我们表明,在真正的错误相关的数据上,RSBL可以与实验文献一致地产生单试源估计。总体而言,通过展示ESI可以在皮质空间中同时地将其产生最大独立的源,我们弥合ESI和ICA框架形式/脑电图分析之间的差距。

著录项

  • 来源
    《Neural computation》 |2021年第9期|2408-2438|共31页
  • 作者单位

    Neural Engineering and Translation Labs Department of Psychiatry and Department of Electrical and Computer Engineering University of California San Diego La Jolla CA 92093 U.S.A;

    Department of Electrical and Computer Engineering University of California San Diego La Jolla CA 92093 U.S.A;

    Neural Engineering and Translation Labs Department of Psychiatry University of California San Diego CA 92093 U.S.A;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号