首页> 外文期刊>Neural computation >Brain Morphometry Methods for Feature Extraction in Random Subspace Ensemble Neural Network Classification of First-Episode Schizophrenia
【24h】

Brain Morphometry Methods for Feature Extraction in Random Subspace Ensemble Neural Network Classification of First-Episode Schizophrenia

机译:一种脑形态测定方法,用于大型精神分裂症的随机子空间集合神经网络分类中的特征提取方法

获取原文
获取原文并翻译 | 示例

摘要

Machine learning (ML) is a growing field that provides tools for automatic pattern recognition. The neuroimaging community currently tries to take advantage of ML in order to develop an auxiliary diagnostic tool for schizophrenia diagnostics. In this letter, we present a classification framework based on features extracted from magnetic resonance imaging (MRI) data using two automatic whole-brain morphometry methods: voxel-based (VBM) and deformation-based morphometry (DBM). The framework employs a random subspace ensemble-based artificial neural network classifier-in particular, a multilayer perceptron (MLP). The framework was tested on data from first-episode schizophrenia patients and healthy controls. The experiments differed in terms of feature extraction methods, using VBM, DBM, and a combination of both morphometry methods. Thus, features of different types were available for model adaptation. As we expected, the combination of features increased the MLP classification accuracy up to 73.12%-an improvement of 5% versus MLP-based only on VBM or DBM features. To further verify the findings, other comparisons using support vector machines in place of MLPs were made within the framework. However, it cannot be concluded that any classifier was better than another.
机译:机器学习(ML)是一种越来越多的领域,可提供自动模式识别的工具。神经影像学社区目前试图利用ML,以开发精神分裂症诊断的辅助诊断工具。在这封信中,我们使用两种自动全脑形态学方法从磁共振成像(MRI)数据中提取的特征提出了一种分类框架:基于体素(VBM)和基于变形的形态学(DBM)。该框架采用基于随机子空间集合的人工神经网络分类器 - 特别是多层的Perceptron(MLP)。该框架是关于精神分裂症患者和健康对照的第一种集科学患者的数据。实验在特征提取方法方面不同,使用VBM,DBM和形态学方法的组合。因此,可用于模型适应的不同类型的特征。正如我们所预期的那样,功能的组合增加了MLP分类精度,高达73.12%-AN的改善为5%,仅基于VBM或DBM功能。为了进一步验证调查结果,在框架内进行了使用支持向量机代替MLP的其他比较。然而,不能得出结论,任何分类器都比另一个分类器更好。

著录项

  • 来源
    《Neural computation》 |2019年第5期|897-918|共22页
  • 作者单位

    Masaryk Univ Inst Biostat & Analyses Fac Med Brno 62500 Czech Republic;

    Masaryk Univ Inst Biostat & Analyses Fac Med Brno 62500 Czech Republic;

    Masaryk Univ Brno 62500 Czech Republic|Univ Hosp Brno Dept Psychiat Brno 62500 Czech Republic;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号