首页> 外文期刊>Neural computation >A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression
【24h】

A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression

机译:基于核岭回归的成对学习方法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction, or network inference problems. During the past decade, kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression, and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze urdversality, consistency, and spectral filtering properties. Our theoretical results provide valuable insights into assessing the advantages and limitations of existing pairwise learning methods.
机译:许多机器学习问题可以表述为预测一对对象的标签。这种问题通常称为成对学习,二元预测或网络推理问题。在过去的十年中,核方法在成对学习中发挥了主导作用。他们仍然获得最先进的预测性能,但是在机器学习文献中尚未对其行为进行理论分析。在这项工作中,我们回顾并统一了在不同的成对学习设置中常用的基于内核的算法,从矩阵过滤到零镜头学习。为此,我们专注于Kronecker内核岭回归的封闭形式有效实例化。我们显示,作为Kronecker内核岭回归的特例,独立任务内核岭回归,两步内核岭回归和线性矩阵滤波器自然会出现,这意味着所有这些方法都隐含了最小化平方损失。此外,我们分析了普遍性,一致性和频谱过滤属性。我们的理论结果为评估现有的成对学习方法的优势和局限性提供了宝贵的见识。

著录项

  • 来源
    《Neural computation》 |2018年第8期|2245-2283|共39页
  • 作者单位

    Univ Ghent, KERMIT, Dept Data Anal & Math Modelling, B-9000 Ghent, Belgium;

    Univ Turku, Dept Future Technol, FIN-20520 Turku, Finland;

    Univ Turku, Dept Future Technol, FIN-20520 Turku, Finland;

    Univ Ghent, KERMIT, Dept Data Anal & Math Modelling, B-9000 Ghent, Belgium;

    Univ Ghent, KERMIT, Dept Data Anal & Math Modelling, B-9000 Ghent, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号