首页> 外文期刊>Neural computation >A Method for Designing Neural Networks Using Nonlinear Multivariate Analysis: Application to Speaker-Independent Vowel Recognition
【24h】

A Method for Designing Neural Networks Using Nonlinear Multivariate Analysis: Application to Speaker-Independent Vowel Recognition

机译:基于非线性多元分析的神经网络设计方法:在独立于说话人的元音识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear multiple logistic model and multiple regression analysis are described as a method for determining the weights for two-layer networks and are compared to error backpropagation. We also provide a method for constructing a three-layer network whose semilinear middle units are primarily provided to discriminate two categories. Experimental results on speaker-independent vowel recognition show that both multivariate methods provide stable weights with fewer iterations than backpropagation training started with random initial weights, but with slightly inferior performance. Backpropagation training with initial weights determined by a multiple logistic model after introduction of data distribution information gives a recognition rate of 98.2%, which is significantly better than average backpropagation with random initial weights.
机译:非线性多元逻辑模型和多元回归分析被描述为确定两层网络权重的方法,并与误差反向传播进行了比较。我们还提供了一种构造三层网络的方法,该网络的主要是提供半线性中间单元来区分两个类别。与说话者无关的元音识别的实验结果表明,与以随机初始权重开始的反向传播训练相比,这两种多变量方法都可提供稳定的权重,且迭代次数更少,但性能稍差。引入数据分布信息后,利用多重逻辑模型确定的初始权重进行反向传播训练,识别率达到98.2%,这明显好于随机初始权重的平均反向传播。

著录项

  • 来源
    《Neural computation》 |1990年第3期|386-397|共12页
  • 作者

    Irino T; Kawahara H;

  • 作者单位

    NTT Basic Research Laboratories, 3-9-11 Midori-cho Musashino-shi, Tokyo 180, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号