首页> 外文期刊>Neural computation >On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear Feedforward Networks
【24h】

On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear Feedforward Networks

机译:线性前馈网络中具有自适应学习率的LMS算法的收敛性

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of training a linear feedforward neural network by using a gradient descent-like LMS learning algorithm. The objective is to find a weight matrix for the network, by repeatedly presenting to it a finite set of examples, so that the sum of the squares of the errors is minimized. Kohonen showed that with a small but fixed learning rate (or stepsize) some subsequences of the weight matrices generated by the algorithm will converge to certain matrices close to the optimal weight matrix. In this paper, we show that, by dynamically decreasing the learning rate during each training cycle, the sequence of matrices generated by the algorithm will converge to the optimal weight matrix. We also show that for any given ∊ > 0 the LMS algorithm, with decreasing learning rates, will generate an ∊-optimal weight matrix (i.e., a matrix of distance at most ∊ away from the optimal matrix) after O(1/∊) training cycles. This is in contrast to Ω(1/∊log 1/∊) training cycles needed to generate an ∊-optimal weight matrix when the learning rate is kept fixed. We also give a general condition for the learning rates under which the LMS learning algorithm is guaranteed to converge to the optimal weight matrix.
机译:我们考虑通过使用类似梯度下降的LMS学习算法来训练线性前馈神经网络的问题。目的是通过反复向其展示一组有限的示例,找到网络的权重矩阵,以使误差平方和最小化。 Kohonen表明,在学习率较小但固定的情况下(或逐步调整大小),该算法生成的权重矩阵的某些子序列将收敛到接近最佳权重矩阵的某些矩阵。在本文中,我们表明,通过在每个训练周期内动态降低学习率,算法生成的矩阵序列将收敛到最优权重矩阵。我们还表明,对于任何给定的∊> 0,随着学习率的降低,LMS算法将在O(1 / ∊)之后生成一个∊最佳权重矩阵(即,距离最优矩阵最多∊的距离的矩阵)训练周期。这与当学习率保持固定时生成∊最优权重矩阵所需的Ω(1 / ∊log 1 / ∊)训练周期相反。我们还给出了学习率的一般条件,在这种条件下,可以保证LMS学习算法收敛到最佳权重矩阵。

著录项

  • 来源
    《Neural computation》 |1991年第2期|226-245|共20页
  • 作者

    Luo Z;

  • 作者单位

    Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号