首页> 外文期刊>Neural computation >Methods For Combining Experts' Probability Assessments
【24h】

Methods For Combining Experts' Probability Assessments

机译:专家概率评估的组合方法

获取原文
获取原文并翻译 | 示例

摘要

This article reviews statistical techniques for combining multiple probability distributions. The framework is that of a decision maker who consults several experts regarding some events. The experts express their opinions in the form of probability distributions. The decision maker must aggregate the experts' distributions into a single distribution that can be used for decision making. Two classes of aggregation methods are reviewed. When using a supra Bayesian procedure, the decision maker treats the expert opinions as data that may be combined with its own prior distribution via Bayes' rule. When using a linear opinion pool, the decision maker forms a linear combination of the expert opinions. The major feature that makes the aggregation of expert opinions difficult is the high correlation or dependence that typically occurs among these opinions. A theme of this paper is the need for training procedures that result in experts with relatively independent opinions or for aggregation methods that implicitly or explicitly model the dependence among the experts. Analyses are presented that show that m dependent experts are worth the same as k independent experts where k ≤ m. In some cases, an exact value for k can be given; in other cases, lower and upper bounds can be placed on k.
机译:本文介绍了用于组合多个概率分布的统计技术。该框架是决策者的框架,他会就一些事件咨询几位专家。专家们以概率分布的形式表达他们的观点。决策者必须将专家的分布汇总到一个可用于决策的分布中。综述了两类聚合方法。当使用超贝叶斯程序时,决策者将专家意见视为数据,可以通过贝叶斯规则将其与自己的先前分布结合起来。当使用线性意见库时,决策者形成专家意见的线性组合。使专家意见难以汇总的主要特征是这些意见之间通常发生的高度相关性或依赖性。本文的主题是需要使专家意见相对独立的培训程序,或者需要隐式或显式地建模专家之间依存关系的汇总方法。提出的分析表明,当k≤m时,m个依赖专家的价值与k个独立专家的价值相同。在某些情况下,可以给出k的确切值。在其他情况下,上下限可以放在k上。

著录项

  • 来源
    《Neural computation》 |1995年第5期|867-888|共22页
  • 作者

    Jacobs R;

  • 作者单位

    Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号