首页> 外文期刊>Neural computation >Neural Network for Dynamic Binding with Graph Representation: Form, Linking, and Depth-from-Occlusion
【24h】

Neural Network for Dynamic Binding with Graph Representation: Form, Linking, and Depth-from-Occlusion

机译:具有图形表示的动态绑定的神经网络:形式,链接和遮盖深度

获取原文
获取原文并翻译 | 示例

摘要

A neural network is presented that explicitly represents form attributes and relations between them, thus solving the binding problem without temporal coding. Rather, the network creates a graph representation by dynamically allocating nodes to code local form attributes and establishing arcs to link them. With this representation, the network selectively groups and segments in depth objects based on line junction information, producing results consistent with those of several recent visual search experiments. In addition to depth-from-occlusion, the network provides a sufficient framework for local line-labeling processes to recover other three-dimensional (3-D) variables, such as edge/surface contiguity, edge slant, and edge convexity.
机译:提出了一个神经网络,该神经网络显式表示表单属性及其之间的关系,从而无需时间编码即可解决绑定问题。相反,网络通过动态分配节点以编码局部表单属性并建立连接它们的弧线来创建图形表示。通过这种表示,网络根据线结点信息有选择地对深度对象进行分组和分段,从而产生与最近的一些视觉搜索实验一致的结果。除了从遮挡深度开始,该网络还为局部线标注过程提供了足够的框架,以恢复其他三维(3-D)变量,例如边缘/表面连续性,边缘倾斜度和边缘凸度。

著录项

  • 来源
    《Neural computation》 |1996年第6期|1203-1225|共23页
  • 作者

    Williamson J;

  • 作者单位

    Center for Adaptive Systems and Department of Cognitive and Neural Systems, Boston University, 677 Beacon Street, Boston, MA 02215 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号