首页> 外文期刊>Neural computation >Modeling the Combination of Motion, Stereo, and Vergence Angle Cues to Visual Depth
【24h】

Modeling the Combination of Motion, Stereo, and Vergence Angle Cues to Visual Depth

机译:对运动,立体声和发散角提示与视觉深度的组合进行建模

获取原文
获取原文并翻译 | 示例

摘要

Three models of visual cue combination were simulated: a weak fusion model, a modified weak model, and a strong model. Their relative strengths and weaknesses are evaluated on the basis of their performances on the tasks of judging the depth and shape of an ellipse. The models differ in the amount of interaction that they permit among the cues of stereo, motion, and vergence angle. Results suggest that the constrained nonlinear interaction of the modified weak model allows better performance than either the linear interaction of the weak model or the unconstrained nonlinear interaction of the strong model. Further examination of the modified weak model revealed that its weighting of motion and stereo cues was dependent on the task, the viewing distance, and, to a lesser degree, the noise model. Although the dependencies were sensible from a computational viewpoint, they were sometimes inconsistent with psychophysical experimental data. In a second set of experiments, the modified weak model was given contradictory motion and stereo information. One cue was informative in the sense that it indicated an ellipse, while the other cue indicated a flat surface. The modified weak model rapidly reweighted its use of stereo and motion cues as a function of each cue's informativeness. Overall, the simulation results suggest that relative to the weak and strong models, the modified weak fusion model is a good candidate model of the combination of motion, stereo, and vergence angle cues, although the results also highlight areas in which this model needs modification or further elaboration.
机译:模拟了三种视觉提示组合模型:弱融合模型,改进的弱模型和强模型。在评估椭圆的深度和形状的任务的基础上,根据它们的性能来评估它们的相对优势和劣势。这些模型在立体,运动和发散角的提示之间允许的交互量不同。结果表明,与弱模型的线性相互作用或强模型的无约束非线性相互作用相比,改进的弱模型的受约束非线性相互作用具有更好的性能。对修改后的弱模型的进一步检查显示,其运动和立体声提示的权重取决于任务,观看距离以及在较小程度上取决于噪声模型。尽管从计算的角度来看这种依赖性是明智的,但它们有时与心理物理实验数据不一致。在第二组实验中,修改后的弱模型被赋予矛盾的运动和立体信息。一个提示在表示椭圆的意义上是有益的,而另一个提示则表示平坦的表面。修改后的弱模型根据每个提示的信息量迅速重新使用了立体声和运动提示。总体而言,仿真结果表明,相对于弱模型和强模型,修改后的弱融合模型是运动,立体和发散角提示组合的良好候选模型,尽管结果也突出了该模型需要修改的领域或进一步阐述。

著录项

  • 来源
    《Neural computation》 |1999年第6期|1297-1330|共34页
  • 作者

    Fine I; Jacobs R;

  • 作者单位

    Center for Visual Science, University of Rochester, Rochester, NY 14627, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号