首页> 外文期刊>Neural computation >Dictionary Learning Algorithms for Sparse Representation
【24h】

Dictionary Learning Algorithms for Sparse Representation

机译:稀疏表示的字典学习算法

获取原文
获取原文并翻译 | 示例

摘要

Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial "25 words or less"), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have im- proved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an over-complete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error).
机译:基于带凹/舒尔凹(CSC)负对数先验的贝叶斯模型的使用,开发了用于数据驱动学习特定领域的超完备字典的算法,以获得最大似然性和最大后验字典估计。这样的先验适合于在适当选择的(环境匹配的)词典中获得环境信号的稀疏表示。字典的元素可以解释为概念,特征或单词,它们能够简洁地表达环境(测量信号的来源)中遇到的事件。这是矢量量化的一种概括,因为它对涉及几个词典条目(俗称“ 25个单词或更少”)的描述感兴趣,但不一定像一个条目那样简洁。为了学习能够简明表达环境产生的信号的环境适应字典,我们开发了算法,该算法在FOCUSS变体发现的代表性稀疏表示集与使用这些稀疏表示的字典更新之间进行迭代。使用合成数据和自然图像进行实验。对于完整的词典,我们证明了我们的算法比其他独立成分分析(ICA)方法具有更好的性能,该方法以分离源的信噪比衡量。在过度完备的情况下,我们表明可以准确地恢复真正的基础字典和稀疏源。在使用自然图像的测试中,学习到的超完备词典显示出比完整词典更高的编码效率。也就是说,使用不完整字典编码的图像具有更高的压缩率(每个像素更少的位)和更高的精度(均方差更低)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号