首页> 外文期刊>Neural computation >A Neural Root Finder of Polynomials Based on Root Moments
【24h】

A Neural Root Finder of Polynomials Based on Root Moments

机译:基于根矩的多项式的神经根查找器

获取原文
获取原文并翻译 | 示例

摘要

This letter proposes a novel neural root finder based on the root moment method (RMM) to find the arbitrary roots (including complex ones) of arbitrary polynomials. This neural root finder (NRF) was designed based on feedforward neural networks (FNN) and trained with a constrained learning algorithm (CLA). Specifically, we have incorporated the a priori information about the root moments of polynomials into the conventional backpropagation algorithm (BPA), to construct a new CLA. The resulting NRF is shown to be able to rapidly estimate the distributions of roots of polynomials. We study and compare the advantage of the RMM-based NRF over the previous root coefficient method-based NRF and the traditional Muller and Laguerre methods as well as the mathematica roots function, and the behaviors, the accuracies of the resulting root finders, and their training speeds of two specific structures corresponding to this FNN root finder: the log Σ and the Σ - Π FNN. We also analyze the effects of the three controlling parameters {δP_0, θ_p, η} with the CLA on the two NRFs theoretically and experimentally. Finally, we present computer simulation results to support our claims.
机译:这封信提出了一种基于根矩方法(RMM)的新型神经根查找器,用于查找任意多项式的任意根(包括复数根)。该神经根查找器(NRF)是基于前馈神经网络(FNN)设计的,并使用约束学习算法(CLA)进行了训练。具体来说,我们已将有关多项式根矩的先验信息合并到传统的反向传播算法(BPA)中,以构建新的CLA。结果表明,NRF能够快速估计多项式根的分布。我们研究并比较了基于RMM的NRF相对于以前基于根系数法的NRF和传统的Muller和Laguerre方法以及mathematica根函数的优势以及所得根发现器的行为,准确性及其优势。对应于该FNN根查找器的两个特定结构的训练速度:对数Σ和Σ-ΠFNN。我们还从理论上和实验上分析了带有CLA的三个控制参数{δP_0,θ_p,η}对两个NRF的影响。最后,我们提出计算机仿真结果以支持我们的主张。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号