首页> 外文期刊>Neural computation >A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals
【24h】

A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals

机译:用于学习非平稳自然信号中非线性统计规律的分层贝叶斯模型

获取原文
获取原文并翻译 | 示例

摘要

Capturing statistical regularities in complex, high-dimensional data is an important problem in machine learning and signal processing. Models such as principal component analysis (PCA) and independent component analysis (ICA) make few assumptions about the structure in the data and have good scaling properties, but they are limited to representing linear statistical regularities and assume that the distribution of the data is stationary. For many natural, complex signals, the latent variables often exhibit residual dependencies as well as nonstationary statistics. Here we present a hierarchical Bayesian model that is able to capture higher-order nonlinear structure and represent nonstationary data distributions. The model is a generalization of ICA in which the basis function coefficients are no longer assumed to be independent; instead, the dependencies in their magnitudes are captured by a set of density components. Each density component describes a common pattern of deviation from the marginal density of the pattern ensemble; in different combinations, they can describe nonstationary distributions. Adapting the model to image or audio data yields a nonlinear, distributed code for higher-order statistical regularities that reflect more abstract, invariant properties of the signal.
机译:在复杂的高维数据中捕获统计规律是机器学习和信号处理中的重要问题。主成分分析(PCA)和独立成分分析(ICA)等模型对数据的结构进行了很少的假设,并且具有良好的缩放属性,但是它们仅限于表示线性统计规律,并假设数据的分布是平稳的。对于许多自然的,复杂的信号,潜在变量通常表现出残差依赖性以及非平稳统计量。在这里,我们提出了一种分层贝叶斯模型,该模型能够捕获高阶非线性结构并表示非平稳数据分布。该模型是ICA的概括,其中不再假定基函数系数是独立的;取而代之的是,它们的大小相关性由一组密度分量捕获。每个密度分量都描述了一个与模式集合的边际密度偏差的常见模式;用不同的组合可以描述非平稳分布。使模型适应图像或音频数据会产生非线性的分布式代码,用于更高阶的统计规律,从而反映出信号的更多抽象不变性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号