首页> 外文期刊>Neural computation >A Novel Generic Hebbian Ordering-Based Fuzzy Rule Base Reduction Approach to Mamdani Neuro-Fuzzy System
【24h】

A Novel Generic Hebbian Ordering-Based Fuzzy Rule Base Reduction Approach to Mamdani Neuro-Fuzzy System

机译:Mamdani神经模糊系统的一种新的基于通用Hebbian排序的模糊规则库约简方法

获取原文
获取原文并翻译 | 示例

摘要

There are two important issues in neuro-fuzzy modeling: (1) inter-pretability—the ability to describe the behavior of the system in an inter-pretable way—and (2) accuracy—the ability to approximate the outcome of the system accurately. As these two objectives usually exert contradictory requirements on the neuro-fuzzy model, certain compromise has to be undertaken. This letter proposes a novel rule reduction algorithm, namely, Hebb rule reduction, and an iterative tuning process to balance interpretability and accuracy. The Hebb rule reduction algorithm uses Hebbian ordering, which represents the degree of coverage of the samples by the rule, as an importance measure of each rule to merge the membership functions and hence reduces the number of the rules. Similar membership functions (MFs) are merged by a specified similarity measure in an order of Hebbian importance, and the resultant equivalent rules are deleted from the rule base. The rule with a higher Hebbian importance will be retained among a set of rules. The MFs are tuned through the least mean square (LMS) algorithm to reduce the modeling error. The tuning of the MFs and the reduction of the rules proceed iteratively to achieve a balance between interpretability and accuracy. Three published data sets by Nakanishi (Nakanishi, Turksen, & Sugeno, 1993), the Pat synthetic data set (Pal, Mitra, & Mitra, 2003), and the traffic flow density prediction data set are used as benchmarks to demonstrate the effectiveness of the proposed method. Good interpretability, as well as high modeling accuracy, are derivable simultaneously and are suitably benchmarked against other well-established neuro-fuzzy models.
机译:神经模糊建模中有两个重要问题:(1)可解释性-以可解释的方式描述系统行为的能力-和(2)准确性-准确估算系统结果的能力。由于这两个目标通常会对神经模糊模型施加矛盾的要求,因此必须采取某些折衷办法。这封信提出了一种新颖的规则约简算法,即Hebb规则约简,以及一个迭代的调整过程,以平衡可解释性和准确性。 Hebb规则约简算法使用Hebbian排序(表示规则对样本的覆盖程度)作为每个规则的重要度量,以合并隶属函数,从而减少了规则的数量。按照指定的相似性度量,将相似的隶属函数(MF)按Hebbian重要性顺序合并,然后从规则库中删除所得的等效规则。具有较高Hebbian重要性的规则将保留在一组规则中。通过最小均方(LMS)算法对MF进行调整,以减少建模误差。 MF的调整和规则的减少会反复进行,以实现可解释性和准确性之间的平衡。 Nakanishi(Nakanishi,Turksen,&Sugeno,1993)出版的三个数据集,Pat合成数据集(Pal,Mitra,&Mitra,2003)和交通流量密度预测数据集被用作基准来证明建议的方法。可以同时获得良好的可解释性以及较高的建模精度,并且可以相对于其他公认的神经模糊模型进行适当的基准测试。

著录项

  • 来源
    《Neural computation》 |2007年第6期|p.1656-1680|共25页
  • 作者

    Feng Liu; Chai Quek; Geok See Ng;

  • 作者单位

    Center for Computational Intelligence, Nanyang Technological University, School of Computer Engineering, Singapore 639798;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号