首页> 外文期刊>Neural computation >A Model for Learning Topographically Organized Parts-Based Representations of Objects in Visual Cortex: Topographic Nonnegative Matrix Factorization
【24h】

A Model for Learning Topographically Organized Parts-Based Representations of Objects in Visual Cortex: Topographic Nonnegative Matrix Factorization

机译:用于在视觉皮质中学习基于地形组织部分的对象表示的模型:地形非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Object representation in the inferior temporal cortex (IT), an area of visual cortex critical for object recognition in the primate, exhibits two prominent properties: (1) objects are represented by the combined activity of columnar clusters of neurons, with each cluster representing component features or parts of objects, and (2) closely related features are continuously represented along the tangential direction of individual columnar clusters. Here we propose a learning model that reflects these properties of parts-based representation and topographic organization in a unified framework. This model is based on a nonnegative matrix factorization (NMF) basis decomposition method. NMF alone provides a parts-based representation where nonnegative inputs are approximated by additive combinations of nonnegative basis functions. Our proposed model of topographic NMF (TNMF) incorporates neighborhood connections between NMF basis functions arranged on a topographic map and attainsrnthe topographic property without losing the parts-based property of the NMF. The TNMF represents an input by multiple activity peaks to describe diverse information, whereas conventional topographic models, such as the self-organizing map (SOM), represent an input by a single activity peak in a topographic map. We demonstrate the parts-based and topographic properties of the TNMF by constructing a hierarchical model for object recognition where the TNMF is at the top tier for learning high-level object features. The TNMF showed better generalization performance over NMF for a data set of continuous view change of an image and more robustly preserving the continuity of the view change in its object representation. Comparison of the outputs of our model with actual neural responses recorded in the IT indicates that the TNMF reconstructs the neuronal responses better than the SOM, giving plausibility to the parts-based learning of the model.
机译:下颞叶皮质(IT)是灵长类动物中对于对象识别至关重要的视觉皮层区域的对象表示,具有两个突出的特性:(1)对象由神经元柱状簇的组合活动表示,每个簇代表组成部分特征或物体的一部分,以及(2)紧密相关的特征沿着各个柱状簇的切线方向连续表示。在这里,我们提出了一个学习模型,该模型在统一的框架中反映了基于零件的表示和地形组织的这些属性。该模型基于非负矩阵分解(NMF)基础分解方法。仅NMF会提供基于零件的表示,其中非负输入通过非负基函数的加法组合来近似。我们提出的地形NMF(TNMF)模型在地形图上排列的NMF基本函数之间合并了邻域连接,并在不丢失NMF基于零件的属性的情况下获得了地形特性。 TNMF通过多个活动峰值表示输入以描述各种信息,而传统的地形模型(例如自组织图(SOM))则通过地形图中的单个活动峰值表示输入。我们通过构造用于对象识别的层次模型来展示TNMF的基于零件和地形的属性,其中TNMF位于学习高级对象特征的顶层。对于图像的连续视图更改的数据集,TNMF显示出优于NMF的泛化性能,并且在其对象表示中更强大地保留了视图更改的连续性。我们的模型输出与IT中记录的实际神经反应的比较表明,TNMF比SOM更好地重建了神经元反应,从而为基于零件的模型学习提供了可能。

著录项

  • 来源
    《Neural computation》 |2009年第9期|2605-2633|共29页
  • 作者单位

    Department of Quantum Engineering and Systems Science, University of Tokyo, Tokyo, Japan;

    Department of Quantum Engineering and Systems Science, University of Tokyo, Tokyo, Japan;

    HONDA Research Institute Europe GmbH, Offenbach, Germany;

    HONDA Research Institute Europe GmbH, Offenbach, Germany;

    HONDA Research Institute Japan Co., Ltd, Saitama, Japan;

    Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan;

    Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号