首页> 外文期刊>Neural computation >Conditional Probability-Based Significance Tests for Sequential Patterns in Multineuronal Spike Trains
【24h】

Conditional Probability-Based Significance Tests for Sequential Patterns in Multineuronal Spike Trains

机译:基于条件概率的多神经秒杀序列序列模式的显着性检验

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of detecting statistically significant sequential patterns in multineuronal spike trains. These patterns are characterized by ordered sequences of spikes from different neurons with specific delays between spikes. We have previously proposed a data-mining scheme to efficiently discover such patterns, which occur often enough in the data. Here we propose a method to determine the statistical significance of such repeating patterns. The novelty of our approach is that we use a compound null hypothesis that not only includes models of independent neurons but also models where neurons have weak dependencies. The strength of interaction among the neurons is represented in terms of certain pair-wise conditional probabilities. We specify our null hypothesis by putting an upper bound on all such conditional probabilities. We construct a probabilistic model that captures the counting process and use this to derive a test of significance for rejecting such a compound null hypothesis. The structure of our null hypothesis also allows us to rank-order different significant patterns. We illustrate the effectiveness of our approach using spike trains generated with a simulator.
机译:我们考虑在多神经冲刺序列中检测统计上有意义的顺序模式的问题。这些模式的特征是来自不同神经元的尖峰的有序序列,尖峰之间有特定的延迟。先前我们已经提出了一种数据挖掘方案来有效地发现这种模式,这种模式在数据中经常发生。在这里,我们提出了一种确定这种重复模式的统计显着性的方法。我们方法的新颖之处在于,我们使用了一个复合零假设,该假设不仅包括独立神经元的模型,而且还包括神经元具有弱依赖性的模型。神经元之间相互作用的强度用某些成对的条件概率表示。我们通过对所有这些条件概率设置上限来指定零假设。我们构建了一个捕获计数过程的概率模型,并使用该模型来推导拒绝这种复合无效假设的重要性检验。零假设的结构也使我们能够对不同的重要模式进行排序。我们使用模拟器生成的峰值序列来说明我们的方法的有效性。

著录项

  • 来源
    《Neural computation》 |2010年第4期|p.1025-1059|共35页
  • 作者单位

    Department of Electrical Engineering, Indian Institute of Science, Bangalore 560 012, India;

    National Center for Integrative Biomedical Informatics (NCIBI), The University of Michigan Medical School, Ann Arbor, MI 48109, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号