首页> 外文期刊>Neural computation >Improved Similarity Measures for Small Sets of Spike Trains
【24h】

Improved Similarity Measures for Small Sets of Spike Trains

机译:小套钉火车的改进相似性度量

获取原文

摘要

Multiple measures have been developed to quantify the similarity between two spike trains. These measures have been used for the quantification of the mismatch between neuron models and experiments as well as for the classification of neuronal responses in neuroprosthetic devices and electrophysiological experiments. Frequently only a few spike trains are available in each class. We derive analytical expressions for the small-sample bias present when comparing estimators of the time-dependent firing intensity. We then exploit analogies between the comparison of firing intensities and previously used spike train metrics and show that improved spike train measures can be successfully used for fitting neuron models to experimental data, for comparisons of spike trains, and classification of spike train data. In classification tasks, the improved similarity measures can increase the recovered information. We demonstrate that when similarity measures are used for fitting mathematical models, all previous methods systematically underestimate the noise. Finally, we show a striking implication of this deterministic bias by reevaluating the results of the single-neuron prediction challenge.
机译:已经开发出多种措施来量化两个尖峰列之间的相似性。这些措施已用于量化神经元模型和实验之间的不匹配,以及用于神经修复设备和电生理实验中神经元反应的分类。通常,每个班级只提供少量尖峰列车。当比较随时间变化的发射强度的估计量时,我们得出存在的小样本偏差的解析表达式。然后,我们利用发射强度的比较与以前使用的峰值训练量度之间的类比,证明改进的峰值训练量度可以成功地用于将神经元模型拟合到实验数据中,用于峰值训练的比较和峰值训练数据的分类。在分类任务中,改进的相似性度量可以增加恢复的信息。我们证明,当相似性度量用于拟合数学模型时,所有以前的方法都会系统地低估噪声。最后,我们通过重新评估单神经元预测挑战的结果,显示了这种确定性偏见的惊人含义。

著录项

  • 来源
    《Neural computation》 |2011年第12期|p.3016-3069|共54页
  • 作者单位

    Brain Mind Institute and School of Computer and Communication Sciences, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne EPFL, Switzerland;

    Brain Mind Institute and School of Computer and Communication Sciences, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne EPFL, Switzerland;

    Brain Mind Institute and School of Computer and Communication Sciences, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne EPFL, Switzerland;

    Brain Mind Institute and School of Computer and Communication Sciences, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne EPFL, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号