首页> 外文期刊>Neural computation >Integration of Reinforcement Learning and Optimal Decision-Making Theories of the Basal Ganglia
【24h】

Integration of Reinforcement Learning and Optimal Decision-Making Theories of the Basal Ganglia

机译:强化学习与基础神经节的最佳决策理论的整合

获取原文
获取原文并翻译 | 示例

摘要

This article seeks to integrate two sets of theories describing action selection in the basal ganglia: reinforcement learning theories describing learning which actions to select to maximize reward and decision-making theories proposing that the basal ganglia selects actions on the basis of sensory evidence accumulated in the cortex. In particular, we present a model that integrates the actor-critic model of reinforcement learning and a model assuming that the cortico-basal-ganglia circuit implements a statistically optimal decision-making procedure. The values of corico-striatal weights required for optimal decision making in our model differ from those provided by standard reinforcement learning models. Nevertheless, we show that an actor-critic model converges to the weights required for optimal decision making when biologically realistic limits on synaptic weights are introduced. We also describe the model's predictions concerning reaction times and neural responses during learning, and we discuss directions required for further integration of reinforcement learning and optimal decision-making theories.
机译:本文力求整合两套描述基底神经节中动作选择的理论:强化学习理论,描述学习选择哪些动作以最大化奖励,以及决策理论,提出基础神经节根据在神经节中积累的感官证据选择动作。皮层。特别是,我们提出了一个模型,该模型整合了强化学习的行为者-批评模型和一个假设皮质-基底神经节电路实现了统计最优决策程序的模型。在我们的模型中,最佳决策所需的皮质纹状体权重值与标准强化学习模型提供的值不同。然而,我们表明,当引入生物学上对突触权重的实际限制时,行动者评论模型会收敛到最佳决策所需的权重。我们还描述了模型在学习过程中有关反应时间和神经反应的预测,并讨论了进一步整合强化学习和最佳决策理论所需的方向。

著录项

  • 来源
    《Neural computation》 |2011年第4期|p.817-851|共35页
  • 作者

    Rafal Bogacz; Tobias Larsen;

  • 作者单位

    Department of Computer Science, University of Bristol, Bristol BS8 1UB, U.K.;

    Department of Computer Science, University of Bristol, Bristol BS8 1UB, U.K.,and Trinity College Institute of Neuroscience, Dublin 2, Ireland;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号