首页> 外文期刊>Neural computation >Modeling Multivariate Time Series on Manifolds with Skew Radial Basis Functions
【24h】

Modeling Multivariate Time Series on Manifolds with Skew Radial Basis Functions

机译:具有斜径向基函数的流形上的多元时间序列建模

获取原文
获取原文并翻译 | 示例

摘要

We present an approach for constructing nonlinear empirical mappings from high-dimensional domains to multivariate ranges. We employ radial basis functions and skew radial basis functions for constructing a model using data that are potentially scattered or sparse. The algorithm progresses iteratively, adding a new function at each step to refine the model. The placement of the functions is driven by a statistical hypothesis test that accounts for correlation in the multivariate range variables. The test is applied on training and validation data and reveals nonstatis-tical or geometric structure when it fails. At each step, the added function is fit to data contained in a spatiotemporally defined local region to determine the parameters-in particular, the scale of the local model. The scale of the function is determined by the zero crossings of the autocorrelation function of the residuals. The model parameters and the number of basis functions are determined automatically from the given data, and there is no need to initialize any ad hoc parameters save for the selection of the skew radial basis functions. Compactly supported skew radial basis functions are employed to improve model accuracy, order, and convergence properties. The extension of the algorithm to higher-dimensional ranges produces reduced-order models by exploiting the existence of correlation in the range variable data. Structure is tested not just in a single time series but between all pairs of time series. We illustrate the new methodologies using several illustrative problems, including modeling data on manifolds and the prediction of chaotic time series.
机译:我们提出了一种构建从高维域到多元范围的非线性经验映射的方法。我们使用径向基函数和偏斜径向基函数来使用可能分散或稀疏的数据来构建模型。该算法反复进行,在每个步骤中添加了一个新函数来完善模型。函数的位置由统计假设检验驱动,该检验考虑了多元范围变量的相关性。该测试应用于训练和验证数据,并在失败时显示非统计或几何结构。在每个步骤中,添加的函数都适合于时空定义的局部区域中包含的数据,以确定参数,尤其是局部模型的比例。函数的标度由残差的自相关函数的零交叉确定。根据给定的数据自动确定模型参数和基函数的数量,并且无需初始化任何临时参数,只需选择倾斜径向基函数即可。采用紧凑支持的偏斜径向基函数来提高模型的准确性,阶数和收敛性。通过利用范围变量数据中相关性的存在,将算法扩展到高维范围可以生成降阶模型。结构不仅要在单个时间序列中进行测试,还要在所有时间序列对之间进行测试。我们使用几个说明性问题来说明新方法,包括在流形上建模数据和预测混沌时间序列。

著录项

  • 来源
    《Neural computation》 |2011年第1期|p.97-123|共27页
  • 作者单位

    Department of Mathematics, Colorado State University, Fort Collins, CO 80523, U.S.A.;

    Department of Mathematics, Colorado State University, Fort Collins, CO 80523, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号