首页> 外文期刊>Neural computation >Multilabel Classification with Principal Label Space Transformation
【24h】

Multilabel Classification with Principal Label Space Transformation

机译:具有主标签空间转换的多标签分类

获取原文
获取原文并翻译 | 示例

摘要

We consider a hypercube view to perceive the label space of multilabel classification problems geometrically. The view allows us not only to unify many existing multilabel classification approaches but also design a novel algorithm, principal label space transformation (PLST), that captures key correlations between labels before learning. The simple and efficient PLST relies on only singular value decomposition as the key step. We derive the theoretical guarantee of PLST and evaluate its empirical performance using real-world data sets. Experimental results demonstrate that PLST is faster than the traditional binary relevance approach and is superior to the modern compressive sensing approach in terms of both accuracy and efficiency.
机译:我们考虑一个超立方体视图,以几何方式感知多标签分类问题的标签空间。该视图不仅使我们能够统一许多现有的多标签分类方法,而且还设计了一种新颖的算法,即主标签空间变换(PLST),该算法可以在学习之前捕获标签之间的关键关联。简单高效的PLST仅依靠奇异值分解作为关键步骤。我们得出PLST的理论保证,并使用实际数据集评估其经验性能。实验结果表明,PLST比传统的二进制相关方法要快,并且在准确性和效率上都优于现代的压缩传感方法。

著录项

  • 来源
    《Neural computation》 |2012年第9期|p.2508-2542|共35页
  • 作者

    Farbound Tai; Hsuan-Tien Lin;

  • 作者单位

    Department of Computer Science, National Taiwan University, Taipei 106, Taiwan;

    Department of Computer Science, National Taiwan University, Taipei 106, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号