首页> 外文期刊>Neural computation >Block Clustering Based on Difference of Convex Functions (DC) Programming and DC Algorithms
【24h】

Block Clustering Based on Difference of Convex Functions (DC) Programming and DC Algorithms

机译:基于凸函数(DC)编程和DC算法差异的块聚类

获取原文
获取原文并翻译 | 示例

摘要

We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
机译:我们研究了凸函数(DC)编程和DC算法(DCA)的区别,以解决连续框架中的块聚类问题,而后者通常需要解决硬组合优化问题。开发了DC重新编程技术和DC编程中的精确代价,以构建块聚类问题的适当等效DC程序。它们为最终的DC程序带来了优雅而明确的DCA方案。计算实验证明了该算法的鲁棒性和有效性,并且优于标准算法,例如二模K均值,二模模糊聚类和块分类EM。

著录项

  • 来源
    《Neural computation》 |2013年第10期|2776-2807|共32页
  • 作者单位

    Laboratory of Theoretical and Applied Computer Science, University of Lorraine, 57045 Metz, France;

    Laboratoire of Mathematics, National Institute for Applied Sciences-Rouen, 76800 Saint-Etienne-du-Rouvray cedex, France;

    University of Qui Nhon, Quy Nhon City, Vietnam;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号