首页> 外文期刊>Neural computation >A Neural Framework for Organization and Flexible Utilization of Episodic Memory in Cumulatively Learning Baby Humanoids
【24h】

A Neural Framework for Organization and Flexible Utilization of Episodic Memory in Cumulatively Learning Baby Humanoids

机译:用于累积学习婴儿人形动物的情节记忆的组织和灵活利用的神经框架

获取原文
获取原文并翻译 | 示例

摘要

Cumulatively developing robots offer a unique opportunity to reenact the constant interplay between neural mechanisms related to learning, memory, prospection, and abstraction from the perspective of an integrated system that acts, learns, remembers, reasons, and makes mistakes. Situated within such interplay lie some of the computationally elusive and fundamental aspects of cognitive behavior: the ability to recall and flexibly exploit diverse experiences of one’s past in the context of the present to realize goals, simulate the future, and keep learning further. This article is an adventurous exploration in this direction using a simple engaging scenario of how the humanoid iCub learns to construct the tallest possible stack given an arbitrary set of objects to play with. The learning takes place cumulatively, with the robot interacting with different objects (some previously experienced, some novel) in an open-ended fashion. Since the solution itself depends on what objects are available in the “now,” multiple episodes of past experiences have to be remembered and creatively integrated in the context of the present to be successful. Starting from zero, where the robot knows nothing, we explore the computational basis of organization episodic memory in a cumulatively learning humanoid and address (1) how relevant past experiences can be reconstructed based on the present context, (2) how multiple stored episodic memories compete to survive in the neural space and not be forgotten, (3) how remembered past experiences can be combined with explorative actions to learn something new, and (4) how multiple remembered experiences can be recombined to generate novel behaviors (without exploration). Through the resulting behaviors of the robot as it builds, breaks, learns, and remembers, we emphasize that mechanisms of episodic memory are fundamental design features necessary to enable the survival of autonomous robots in a real world where neit- er everything can be known nor can everything be experienced.
机译:从动作,学习,记忆,原因和犯错的集成系统的角度来看,累积开发的机器人为重新实现与学习,记忆,预期和抽象有关的神经机制之间不断相互作用的独特机会。在这种相互作用中,存在着一些认知行为的计算上难以捉摸的基本方面:在当前环境下回忆和灵活利用过去的各种经验以实现目标,模拟未来并不断学习的能力。本文是一个简单的引人入胜的探索,它使用简单的引人入胜的场景来说明人形生物iCub如何学习在给定任意对象组的情况下构造尽可能高的堆栈。学习是累积发生的,机器人以开放式方式与不同的对象(一些以前体验过的东西,一些新颖的东西)进行交互。由于解决方案本身取决于“现在”中可用的对象,因此必须记住过去的经历的多个情节,并在当前环境中进行创造性地整合才能成功。从零开始,其中机器人一无所知,我们在累积学习的类人动物中探索组织情节记忆的计算基础,并探讨(1)如何根据当前上下文重建过去的相关经验,(2)如何存储多个情节记忆竞争并在神经空间中生存而不被遗忘,(3)如何将过去的记忆与探索性动作相结合以学习新事物,(4)如何将多种记忆的体验重新组合以产生新的行为(无需探索)。通过机器人在构建,破坏,学习和记忆时所产生的行为,我们强调,情节性记忆机制是使自主机器人在现实世界中生存所必需的基本设计特征,而在现实世界中,任何事情都不知道或也不知道一切都可以体验

著录项

  • 来源
    《Neural computation》 |2014年第12期|2692-2734|共43页
  • 作者

    Mohan V; Sandini G; Morasso P;

  • 作者单位

    Robotics, Brain and Cognitive Science Department, Istituto Italiano di Tecnologia, Genova, Italy vishwanathan.mohan@iit.it;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号