首页> 外文期刊>Neural computation >Sample Skewness as a Statistical Measurement of Neuronal Tuning Sharpness
【24h】

Sample Skewness as a Statistical Measurement of Neuronal Tuning Sharpness

机译:样本偏度作为神经元调谐锐度的统计度量

获取原文
获取原文并翻译 | 示例

摘要

We propose using the statistical measurement of the sample skewness of the distribution of mean firing rates of a tuning curve to quantify sharpness of tuning. For some features, like binocular disparity, tuning curves are best described by relatively complex and sometimes diverse functions, making it difficult to quantify sharpness with a single function and parameter. Skewness provides a robust nonparametric measure of tuning curve sharpness that is invariant with respect to the mean and variance of the tuning curve and is straightforward to apply to a wide range of tuning, including simple orientation tuning curves and complex object tuning curves that often cannot even be described parametrically. Because skewness does not depend on a specific model or function of tuning, it is especially appealing to cases of sharpening where recurrent interactions among neurons produce sharper tuning curves that deviate in a complex manner from the feedforward function of tuning. Since tuning curves for all neurons are not typically well described by a single parametric function, this model independence additionally allows skewness to be applied to all recorded neurons, maximizing the statistical power of a set of data. We also compare skewness with other nonparametric measures of tuning curve sharpness and selectivity. Compared to these other nonparametric measures tested, skewness is best used for capturing the sharpness of multimodal tuning curves defined by narrow peaks (maximum) and broad valleys (minima). Finally, we provide a more formal definition of sharpness using a shape-based information gain measure and derive and show that skewness is correlated with this definition.
机译:我们建议使用统计测量的调谐曲线平均点火速率分布的样本偏度来量化调谐的清晰度。对于某些功能(例如双目视差),最好用相对复杂的功能(有时是多样化的功能)来描述调谐曲线,从而很难用单个功能和参数来量化清晰度。偏斜度提供了一种鲁棒的非精确的调整曲线锐度度量,相对于调整曲线的均值和方差是不变的,并且可以直接应用于广泛的调整范围,包括简单的方向调整曲线和复杂的对象调整曲线,这些调整曲线通常甚至无法用参数描述。由于偏斜度不取决于特定的调整模型或调整功能,因此特别适合于锐化的情况,在这种情况下,神经元之间的反复交互会产生更锐利的调整曲线,从而以复杂的方式偏离调整的前馈功能。由于通常无法通过单个参数函数很好地描述所有神经元的调整曲线,因此该模型独立性还允许将偏斜度应用于所有记录的神经元,从而最大化一组数据的统计能力。我们还将偏斜度与其他调整曲线清晰度和选择性的非参数量度进行了比较。与测试的其他这些非参数度量相比,偏斜度最适合用于捕获由窄峰(最大值)和宽谷(最小值)定义的多峰调谐曲线的清晰度。最后,我们使用基于形状的信息增益度量来提供对清晰度的更正式定义,并得出并显示偏斜度与此定义相关。

著录项

  • 来源
    《Neural computation》 |2014年第5期|860-906|共47页
  • 作者单位

    Center for the Neural Basis of Cognition and Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.;

    Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, U.S.A.;

    Center for the Neural Basis of Cognition and Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号