首页> 外文期刊>Neural computation >Solving Stereo Transparency with an Extended Coarse-to-Fine Disparity Energy Model
【24h】

Solving Stereo Transparency with an Extended Coarse-to-Fine Disparity Energy Model

机译:使用扩展的粗到细视差能量模型解决立体透明

获取原文
获取原文并翻译 | 示例

摘要

Modeling stereo transparency with physiologically plausible mechanisms is challenging because in such frameworks, large receptive fields mix up overlapping disparities, whereas small receptive fields can reliably compute only small disparities. It seems necessary to combine information across scales. A coarse-to-fine disparity energy model, with both position- and phase-shift receptive fields, has already been proposed. However, because each scale decodes only one disparity for each location and uses the decoded disparity to select cells at the next scale, this model cannot represent overlapping surfaces at different depths. We have extended the model to solve stereo transparency. First, we introduce multiplicative connections from cells at one scale to the next to implement coarse-to-fine computation. The connection is the strongest when the presynaptic cell’s preferred disparity matches the postsynaptic cell’s position-shift parameter, encouraging the next scale to encode residual disparities with the more reliable phase-shift mechanism. This modification not only eliminates the artificial decoding and selection steps of the original model but also enables maintenance of complete population responses throughout the coarse-to-fine process. Second, because of this modification, explicit decoding is no longer necessary but rather is for visualization only. We use a simple threshold criterion to decode multiple disparities from population energy responses instead of a single disparity in the original model. We demonstrate our model using simulations on a variety of transparent and nontransparent stereograms. The model also reproduces psychophysically observed disparity interactions (averaging, thickening, attraction, and repulsion) as the depth separation between two overlapping planes varies.
机译:用生理上合理的机制对立体透明度进行建模是具有挑战性的,因为在这样的框架中,大的接收场会混合重叠的视差,而小的接收场只能可靠地计算出小的视差。似乎有必要将各种规模的信息结合起来。已经提出了具有位置和相移接收场的粗糙到精细的视差能量模型。但是,由于每个比例尺仅解码每个位置的一个视差并使用解码后的视差来选择下一个比例尺的像元,因此该模型无法表示不同深度的重叠表面。我们扩展了模型以解决立体透明度。首先,我们引入了从一个单元到另一个单元的乘法连接,以实现从粗到精的计算。当突触前细胞的首选视差与突触后细胞的位置偏移参数匹配时,这种连接是最牢固的,从而鼓励下一级别使用更可靠的相移机制来编码残留视差。这种修改不仅消除了原始模型的人工解码和选择步骤,而且还可以在整个粗到精过程中维持完整的总体响应。其次,由于此修改,不再需要显式解码,而仅用于可视化。我们使用简单的阈值准则从人口能量响应中解码多个差异,而不是原始模型中的单个差异。我们使用各种透明和非透明立体图上的模拟来演示我们的模型。当两个重叠平面之间的深度间隔发生变化时,该模型还重现了从心理上观察到的视差相互作用(平均,加厚,吸引和排斥)。

著录项

  • 来源
    《Neural computation》 |2015年第5期|1058-1082|共25页
  • 作者

    Li Zhe; Qian Ning;

  • 作者单位

    School of Medicine, Tsinghua University, Beijing 100084, China lizhe07@mails.tsinghua.edu.cn;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号