首页> 外文期刊>Neural computation >Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON
【24h】

Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON

机译:促进大脑研究的模拟神经技术:在NEURON中并行化大型网络

获取原文
获取原文并翻译 | 示例

摘要

Large multiscale neuronal network simulations are of increasing value as more big data are gathered about brain wiring and organization under the auspices of a current major research initiative, such as Brain Research through Advancing Innovative Neurotechnologies. The development of these models requires new simulation technologies. We describe here the current use of the NEURON simulator with message passing interface (MPI) for simulation in the domain of moderately large networks on commonly available high-performance computers (HPCs). We discuss the basic layout of such simulations, including the methods of simulation setup, the run-time spike-passing paradigm, and postsimulation data storage and data management approaches. Using the Neuroscience Gateway, a portal for computational neuroscience that provides access to large HPCs, we benchmark simulations of neuronal networks of different sizes (500–100,000 cells), and using different numbers of nodes (1–256). We compare three types of networks, composed of either Izhikevich integrate-and-fire neurons (I&F), single-compartment Hodgkin-Huxley (HH) cells, or a hybrid network with half of each. Results show simulation run time increased approximately linearly with network size and decreased almost linearly with the number of nodes. Networks with I&F neurons were faster than HH networks, although differences were small since all tested cells were point neurons with a single compartment.
机译:大型多尺度神经网络仿真的价值日益增加,因为在当前一项重大研究计划(例如通过先进的神经技术进行脑研究)的主持下,收集了有关大脑布线和组织的更多大数据。这些模型的开发需要新的仿真技术。我们在这里描述NEURON模拟器与消息传递接口(MPI)的当前用法,用于在通常的高性能计算机(HPC)上的中等规模网络中进行模拟。我们讨论了此类仿真的基本布局,包括仿真设置方法,运行时传递峰值范式以及仿真后数据存储和数据管理方法。使用神经科学网关(用于提供访问大型HPC的计算神经科学门户),我们对不同大小(500–100,000个细胞)的神经元网络的仿真进行了基准测试,并使用了不同数量的节点(1-256个)。我们比较了三种类型的网络,这些网络由Izhikevich集成并发射神经元(I&F),单隔室霍奇金-赫克斯利(HH)细胞或混合网络组成,每种网络各占一半。结果表明,仿真运行时间随网络规模近似线性增加,而随节点数量线性近似减少。具有I&F神经元的网络比HH网络更快,尽管差异很小,因为所有测试的细胞都是具有单个隔室的点神经元。

著录项

  • 来源
    《Neural computation》 |2016年第10期|2063-2090|共28页
  • 作者单位

    Departments of Physiology, Pharmacology, Biomedical Engineering, and Neurology, SUNY Downstate Medical Center, Brooklyn 11023, New York, and Kings County Hospital Center, Brooklyn 11203, New York, U.S.A. bill.lytton@downstate.edu;

    Departments of Physiology, Pharmacology, Biomedical Engineering, and Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11023, and Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, U.S.A. aseidenstein@icloud.com;

    Departments of Physiology, Pharmacology, Biomedical Engineering, and Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11023, U.S.A. salvadordura@gmail.com;

    Department of Neuroscience, Yale University, New Haven, CT 06520, U.S.A. robert.mcdougal@yale.edu;

    Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Geneva, Switzerland felix.schuermann@epfl.ch;

    Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Geneva, Switzerland, and Department of Neuroscience, Yale University, New Haven, CT 06520, U.S.A. michael.hines@yale.edu;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号