首页> 外文期刊>Neural computation >A Novel Nonparametric Approach for Neural Encoding and Decoding Models of Multimodal Receptive Fields
【24h】

A Novel Nonparametric Approach for Neural Encoding and Decoding Models of Multimodal Receptive Fields

机译:新型多参数接收域神经编码和解码模型的非参数方法

获取原文
获取原文并翻译 | 示例

摘要

Pyramidal neurons recorded from the rat hippocampus and entorhinal cortex, such as place and grid cells, have diverse receptive fields, which are either unimodal or multimodal. Spiking activity from these cells encodes information about the spatial position of a freely foraging rat. At fine timescales, a neuron’s spike activity also depends significantly on its own spike history. However, due to limitations of current parametric modeling approaches, it remains a challenge to estimate complex, multimodal neuronal receptive fields while incorporating spike history dependence. Furthermore, efforts to decode the rat’s trajectory in one- or two-dimensional space from hippocampal ensemble spiking activity have mainly focused on spike history–independent neuronal encoding models. In this letter, we address these two important issues by extending a recently introduced nonparametric neural encoding framework that allows modeling both complex spatial receptive fields and spike history dependencies. Using this extended nonparametric approach, we develop novel algorithms for decoding a rat’s trajectory based on recordings of hippocampal place cells and entorhinal grid cells. Results show that both encoding and decoding models derived from our new method performed significantly better than state-of-the-art encoding and decoding models on 6 minutes of test data. In addition, our model’s performance remains invariant to the apparent modality of the neuron’s receptive field.
机译:从大鼠海马和内嗅皮层(如位置和网格细胞)记录的锥体神经元具有不同的感受野,这些感受野是单峰的或多峰的。这些细胞的刺突活动编码有关自由觅食大鼠的空间位置的信息。在良好的时间尺度上,神经元的尖峰活动也很大程度上取决于其自身的尖峰历史。然而,由于当前参数化建模方法的局限性,在结合尖峰历史依赖性的同时估计复杂的多峰神经元感受野仍然是一个挑战。此外,从海马合奏尖峰活动来解码一维或二维空间中大鼠轨迹的努力主要集中在与峰值历史无关的神经元编码模型上。在这封信中,我们通过扩展最近引入的非参数神经编码框架来解决这两个重要问题,该框架允许对复杂的空间接收场和尖峰历史依赖性进行建模。使用这种扩展的非参数方法,我们基于海马位置细胞和内嗅网格细胞的记录,开发了用于解码大鼠轨迹的新颖算法。结果表明,在6分钟的测试数据上,从我们的新方法派生的编码和解码模型的性能明显优于最新的编码和解码模型。此外,我们模型的性能仍然与神经元感受野的表面形态无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号