首页> 外文期刊>Neural computation >On the Mathematical Consequences of Binning Spike Trains
【24h】

On the Mathematical Consequences of Binning Spike Trains

机译:关于装仓钉火车的数学后果

获取原文
获取原文并翻译 | 示例

摘要

We initiate a mathematical analysis of hidden effects induced by binning spike trains of neurons. Assuming that the original spike train has been generated by a discrete Markov process, we show that binning generates a stochastic process that is no longer Markov but is instead a variable-length Markov chain (VLMC) with unbounded memory. We also show that the law of the binned raster is a Gibbs measure in the DLR (Dobrushin-Lanford-Ruelle) sense coined in mathematical statistical mechanics. This allows the derivation of several important consequences on statistical properties of binned spike trains. In particular, we introduce the DLR framework as a natural setting to mathematically formalize anticipation, that is, to tell “how good” our nervous system is at making predictions. In a probabilistic sense, this corresponds to condition a process by its future, and we discuss how binning may affect our conclusions on this ability. We finally comment on the possible consequences of binning in the detection of spurious phase transitions or in the detection of incorrect evidence of criticality.
机译:我们开始对装箱神经元的尖峰序列引起的隐藏效应进行数学分析。假设原始的尖峰序列是由离散的马尔可夫过程生成的,我们表明装仓将生成一个随机过程,该过程不再是马尔可夫,而是具有无限内存的变长马尔可夫链(VLMC)。我们还表明,装箱栅格的定律是数学统计力学中创造的DLR(Dobrushin-Lanford-Ruelle)意义上的吉布斯度量。这使得可以得出对分叉式尖峰列的统计特性的几个重要结果。特别是,我们引入DLR框架作为自然的设置,以数学方式将预期形式化,也就是说,告诉我们的神经系统在进行预测时“有多好”。从概率的意义上讲,这对应于通过其将来来限定过程,并且我们讨论装箱如何影响我们对此能力的结论。最后,我们对装箱在检测伪相变或检测不正确的临界证据方面可能产生的后果进行评论。

著录项

  • 来源
    《Neural computation》 |2017年第1期|146-170|共25页
  • 作者单位

    Biovision Team and Université Cote-d’Azur, 06902 Sophia Antipolis, France, and INRIA, 06902 Sophia-Antipolis, France bruno.cessac@inria.fr;

    Laboratoire LAMA, UMR CNRS, 8050, 94010 Créteil, France, and Université Paris Est Créteil, 94010 Créteil Cedex, France arnaud.le-ny@u-pec.fr;

    Laboratoire AGM, UMR CNRS 8088, Université de Cergy-Pontoise, 95302 Cergy-Pontoise Cedex, France eva.loecherbach@u-cergy.fr;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号