首页> 外文期刊>Neural computation >Bias Reduction and Metric Learning for Nearest-Neighbor Estimation of Kullback-Leibler Divergence
【24h】

Bias Reduction and Metric Learning for Nearest-Neighbor Estimation of Kullback-Leibler Divergence

机译:偏减和度量学习用于Kullback-Leibler发散的最近邻估计

获取原文
获取原文并翻译 | 示例

摘要

Nearest-neighbor estimators for the Kullback-Leiber (KL) divergence that are asymptotically unbiased have recently been proposed and demonstrated in a number of applications. However, with a small number of samples, nonparametric methods typically suffer from large estimation bias due to the nonlocality of information derived from nearest-neighbor statistics. In this letter, we show that this estimation bias can be mitigated by modifying the metric function, and we propose a novel method for learning a locally optimal Mahalanobis distance function from parametric generative models of the underlying density distributions. Using both simulations and experiments on a variety of data sets, we demonstrate that this interplay between approximate generative models and nonparametric techniques can significantly improve the accuracy of nearest-neighbor-based estimation of the KL divergence.
机译:最近已经提出了渐近无偏的Kullback-Leiber(KL)散度的最近邻估计器,并在许多应用中得到了证明。但是,由于样本量少,非参数方法通常会因来自最近邻居统计信息的信息的局部性而遭受较大的估计偏差。在这封信中,我们表明可以通过修改度量函数来减轻这种估计偏差,并且我们提出了一种从底层密度分布的参数生成模型中学习局部最优马氏距离函数的新方法。通过在各种数据集上进行仿真和实验,我们证明了近似生成模型与非参数技术之间的这种相互作用可以显着提高基于最近邻的KL差异估计的准确性。

著录项

  • 来源
    《Neural computation》 |2018年第7期|1930-1960|共31页
  • 作者单位

    Seoul National University, Seoul 08826, Korea;

    RIKEN, Tokyo 103-0027, Japan, and University of Tokyo, Chiba 277-8561, Japan;

    University of Bristol, Bristol BS8 1TH, U.K;

    University of Tokyo, Chiba 277-8561, Japan;

    Seoul National University, Seoul 08826, Korea;

    University of Pennsylvania, Philadelphia, PA 19104, U.S.A;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号