首页> 外文期刊>Neural computation >Sequence Classification Using Third-Order Moments
【24h】

Sequence Classification Using Third-Order Moments

机译:使用三阶矩进行序列分类

获取原文
获取原文并翻译 | 示例

摘要

Model-based classification of sequence data using a set of hiddenMarkov models is awell-known technique. The involved score function, which is often based on the class-conditional likelihood, can, however, be computationally demanding, especially for long data sequences. Inspired by recent theoretical advances in spectral learning of hiddenMarkov models, we propose a score function based on third-order moments. In particular, we propose to use the Kullback-Leibler divergence between theoretical and empirical third-order moments for classification of sequence data with discrete observations. The proposed method provides lower computational complexity at classification time than the usual likelihood-based methods. In order to demonstrate the properties of the proposed method, we perform classification of both simulated data and empirical data from a human activity recognition study.
机译:使用一组隐式马尔可夫模型对序列数据进行基于模型的分类是众所周知的技术。但是,所涉及的得分函数通常基于类条件似然,但是在计算上可能要求很高,尤其是对于长数据序列而言。受隐马尔可夫模型频谱学习的最新理论进展启发,我们提出了基于三阶矩的得分函数。特别是,我们建议使用理论和经验三阶矩之间的Kullback-Leibler散度,对具有离散观测值的序列数据进行分类。与通常的基于似然性的方法相比,该方法在分类时提供了更低的计算复杂度。为了证明所提出方法的特性,我们对人类活动识别研究的模拟数据和经验数据进行了分类。

著录项

  • 来源
    《Neural computation》 |2018年第1期|216-236|共21页
  • 作者单位

    Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby 2860, Denmark;

    Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby 2860, Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号