首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Modeling User Interests With Online Social Network Influence by Memory Augmented Sequence Learning
【24h】

Modeling User Interests With Online Social Network Influence by Memory Augmented Sequence Learning

机译:通过内存增强序列学习对用户兴趣进行建模用户兴趣

获取原文
获取原文并翻译 | 示例

摘要

Online social networks, such as Facebook and Twitter, enable users to share their shopping/travel experiences with their friends. However the influence on users' decision-making on next visit/buy has sparse research exposure, by accurately modeling long-term user behaviors from historical data. The existing methods do not fully take advantage of the underlying social networks to model user interests, nor they have not modeled long-term transitional behavior patterns. In this paper, we propose a novel Social Influence aware and Memory augmented Sequence learning (SIMS) model, on what a user will likely buy/visit next. Specifically, SIMS first learns a representation for the visiting/purchasing sequence of each user using the sequence-to-sequence learning method. Then it predicts the interest of a user by integrating the representation of his/her own sequence, with another representation of the corresponding social influence, which is learned using an autoencoder-based model. In addition, we leverage an emerging memory augmented neural network, Differentiable Neural Computer (DNC), to further improve prediction accuracy. We conduct extensive experiments to evaluate the proposed model using three real-world datasets, Yelp, Epinions and Ciao. When compared with 10 other baselines and state-of-the-art solutions, the experimental results show that 1) the proposed model significantly outperforms all other methods in terms of various accuracy-related metrics; 2) the proposed social influence modeling and memory augmentation do lead to the performance gain.
机译:在线社交网络,例如Facebook和Twitter,使用户能够与他们的朋友分享他们的购物/旅行经验。然而,通过从历史数据准确建模长期用户行为,对用户决策对下一次访问/购买的影响具有稀疏的研究曝光。现有方法没有充分利用潜在的社交网络来模拟用户兴趣,也没有建模长期过渡行为模式。在本文中,我们提出了一种新颖的社会影响知识和内存增强序列学习(SIMS)模型,用于用户可能会购买/访问的内容。具体地,SIMS首先使用序列到序列学习方法了解每个用户的访问/购买序列的表示。然后,通过集成他/她自己的序列的表示,通过对相应的社会影响的另一个表示来预测用户的兴趣,这是使用基于AutoEncoder的模型来学习的相应社会影响。此外,我们利用新兴内存增强神经网络,可微分的神经计算机(DNC),以进一步提高预测准确性。我们通过三个现实世界数据集,yelp,渗透和ciao进行广泛的实验来评估所提出的模型。与其他10个其他基线和最先进的解决方案相比,实验结果表明,1)所提出的模型在各种精度相关的指标方面显着优于所有其他方法; 2)建议的社会影响建模和内存增强确实导致性能增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号