首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >TPS: A Topological Potential Scheme to Predict Influential Network Nodes for Intelligent Communication in Social Networks
【24h】

TPS: A Topological Potential Scheme to Predict Influential Network Nodes for Intelligent Communication in Social Networks

机译:TPS:一种拓扑潜在方案,用于预测社交网络中智能通信的有影响力的网络节点

获取原文
获取原文并翻译 | 示例

摘要

The growing popularity of Online Social Networks (OSN) have prompted an increasing number of companies to promote their brands and products through social media. This paper presents a topological potential scheme for predicting influential nodes from large scale OSNs to support more intelligent brand communication. We first construct a weighted network model for the users and their relationships extracted from the brand-related content in OSNs. We quantitatively measure the individual value of the nodes from both the network structure and brand engagement aspects. Moreover, we have addressed the problem of influence decay along with information propagation in social networks and use the topological potential theory to evaluate the importance of the nodes by their individual values as well as the individual values of their surrounding nodes. The experimental results have shown that the proposed method is able to predict influential nodes in large-scale OSNs. We investigate the top-k influential nodes identified by our method in detail, which are quite different from those identified by using pure network structure or individual value. We can obtain an identification result with a higher ratio of verified users and user coverage by using our method compared to existing typical approaches.
机译:在线社交网络(OSN)的日益普及促使越来越多的公司通过社交媒体促进其品牌和产品。本文提出了一种拓扑潜在方案,用于预测大规模OSN的有影响力的节点,以支持更智能的品牌通信。我们首先为用户和他们从OSN中的品牌相关内容提取的关系构建加权网络模型。我们从网络结构和品牌参与方面定量测量节点的个别值。此外,我们已经解决了影响衰减的问题以及社交网络中的信息传播,并利用拓扑潜在理论来评估节点对各个值的重要性以及其周围节点的各个值。实验结果表明,所提出的方法能够在大规模OSN中预测有影响力的节点。我们详细研究了我们的方法所识别的Top-K有影响性节点,与使用纯网络结构或单个值识别的那些完全不同。与现有典型方法相比,我们可以通过使用我们的方法获得更高的验证用户和用户覆盖率的识别结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号