首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Trusted-Region Subsequence Reduction for Designing Resilient Consensus Algorithms
【24h】

Trusted-Region Subsequence Reduction for Designing Resilient Consensus Algorithms

机译:设计弹性共识算法的可信区域后续减少

获取原文
获取原文并翻译 | 示例

摘要

Existing resilient consensus algorithms are mainly developed based on the mean subsequence reduced (MSR) method, which relies on the assumption that there exist at most f malicious agents in the entire network or each neighborhood (i.e., f-total or f-local model). However, in some practical cases, it may be impossible to estimate an appropriate upper bound on the number of malicious agents. This paper proposes a novel method, called trusted-region subsequence reduction (TSR), for designing resilient consensus algorithm without the f-total/local model assumption. The main idea of the TSR method is to filter out the received information beyond a dynamic trusted region, determined by the current relative positions of the neighboring trusted nodes. Based on the TSR method, we design a sampled-data resilient consensus algorithm for double-integrator multi-agent networks. A necessary and sufficient graph-theoretic condition is obtained to achieve resilient consensus. Finally, simulations are conducted to illustrate the effectiveness of the proposed algorithm and the faster convergence rate of the TSR-based algorithm than the classical MSR-based algorithm.
机译:现有的弹性共识算法主要是基于均值减少(MSR)方法(MSR)方法而开发的,这依赖于整个网络或每个邻域(即F-Total或F-Local Model)中最多的F恶意代理存在的假设。然而,在一些实际情况下,可能是不可能估计恶意药物数量的适当上限。本文提出了一种新的方法,称为受信任区域后续减少(TSR),用于设计没有F-Total / Local Model假设的弹性共识算法。 TSR方法的主要思想是通过相邻可信节点的当前相对位置来滤除超出动态可信区域之外的接收信息。基于TSR方法,我们设计了一种用于双积分器多代理网络的采样数据弹性共识算法。获得必要和足够的图形理论条件以实现有弹性共识。最后,进行仿真以说明所提出的算法的有效性和基于TSR的算法的更快的收敛速度而不是基于经典的MSR的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号