首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Edge Computing-Empowered Large-Scale Traffic Data Recovery Leveraging Low-Rank Theory
【24h】

Edge Computing-Empowered Large-Scale Traffic Data Recovery Leveraging Low-Rank Theory

机译:EDGE计算 - 赋权大规模交通数据恢复利用低秩理论

获取原文
获取原文并翻译 | 示例

摘要

Intelligent Transportation Systems (ITSs) have been widely deployed to provide traffic sensing data for a variety of smart traffic applications. However, the inevitable and ubiquitous missing data potentially compromises the performance of ITSs and even undermines the traffic applications. Therefore, accurate and real-time traffic data recovery is crucial to ITSs and its related services, especially for large-scale traffic networks. To leverage the characteristics in transportation networks for data recovery, we first conduct experimental explorations on a large-scale traffic dataset of an ITS and further quantify the spatiotemporal correlations of traffic data. Inspired by the observation results, we propose GTR, an edGe computing-empowered system for large-scale Traffic data recovery with low-Rank theory. GTR leverages the decentralized computing power of edge nodes to process massive traffic data from hundreds of traffic stations for accurate and real-time recovery. Specifically, we first propose a suboptimal edge node deployment algorithm with a theoretical performance guarantee, by exploiting the supermodularity in the NP-hard joint-optimization problem. Furthermore, to leverage the low-rank nature of traffic data, we transform the data recovery problem into a low-rank minimization problem, then utilize the fixed-point continuation iterative scheme to capture spatiotemporal correlations for accurate traffic recovery. Finally, the extensive trace-driven evaluations show that GTR only needs at most 5.7% extra total cost compared to the optimal deployment, while outperforming four baseline methods by 63.8% improvement in terms of traffic data recovery accuracy.
机译:智能交通系统(ITS)已被广泛部署,为各种智能流量应用提供流量传感数据。但是,不可避免的缺失数据可能会损害其性能,甚至会破坏流量应用程序。因此,准确和实时的交通数据恢复对其和其相关服务至关重要,特别是对于大型交通网络。为了利用数据恢复的运输网络中的特点,我们首先在其大规模交通数据集进行实验探索,并进一步量化交通数据的时空相关性。灵感来自观察结果,我们提出了GTR,一个边缘计算授权系统,用于具有低秩理论的大规模交通数据恢复。 GTR利用边缘节点的分散计算能力来处理来自数百个流量站的大规模流量数据,以准确和实时恢复。具体而言,我们首先提出了一种次优先级节点部署算法,通过利用NP-Hard联合优化问题中的超颗模性来提出具有理论性能保证的。此外,为了利用交通数据的低级别性质,我们将数据恢复问题转换为低秩最小化问题,然后利用定点延续迭代方案来捕获时空相关性以获得准确的流量恢复。最后,与最佳部署相比,广泛的追踪评估表明,GTR只需要最多5.7%的总成本,同时优于交通数据恢复精度方面的四种基线方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号