首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Channel State Information Prediction for 5G Wireless Communications: A Deep Learning Approach
【24h】

Channel State Information Prediction for 5G Wireless Communications: A Deep Learning Approach

机译:5G无线通信的信道状态信息预测:一种深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

Channel state information (CSI) estimation is one of the most fundamental problems in wireless communication systems. Various methods, so far, have been developed to conduct CSI estimation. However, they usually require high computational complexity, which makes them unsuitable for 5G wireless communications due to employing many new techniques (e.g., massive MIMO, OFDM, and millimeter-Wave (mmWave)). In this paper, we propose an efficient online CSI prediction scheme, called OCEAN, for predicting CSI from historical data in 5G wireless communication systems. Specifically, we first identify several important features affecting the CSI of a radio link and a data sample consists of the information of the features and the CSI. We then design a learning framework that is an integration of a CNN (convolutional neural network) and a long short term with memory (LSTM) network. We also further develop an offline-online two-step training mechanism, enabling the prediction results to be more stable when applying it to practical 5G wireless communication systems. To validate OCEAN's efficacy, we consider four typical case studies, and conduct extensive experiments in the four scenarios, i.e., two outdoor and two indoor scenarios. The experiment results show that OCEAN not only obtains the predicted CSI values very quickly but also achieves highly accurate CSI prediction with up to 2.650-3.457 percent average difference ratio (ADR) between the predicted and measured CSI.
机译:信道状态信息(CSI)估计是无线通信系统中最基本的问题之一。到目前为止,已经开发出各种方法来进行CSI估计。但是,它们通常需要很高的计算复杂度,由于采用了许多新技术(例如大规模MIMO,OFDM和毫米波(mmWave)),因此使其不适合5G无线通信。在本文中,我们提出了一种有效的在线CSI预测方案,称为OCEAN,用于根据5G无线通信系统中的历史数据预测CSI。具体而言,我们首先确定影响无线电链路CSI的几个重要特征,而数据样本则包含这些特征的信息和CSI。然后,我们设计了一个学习框架,该框架是CNN(卷积神经网络)和长期短期记忆(LSTM)网络的集成。我们还进一步开发了离线在线两步训练机制,当将预测结果应用于实际的5G无线通信系统时,可使预测结果更加稳定。为了验证OCEAN的功效,我们考虑了四个典型的案例研究,并在四个场景(即两个室外场景和两个室内场景)中进行了广泛的实验。实验结果表明,OCEAN不仅可以非常快速地获得预测的CSI值,而且还可以实现高度准确的CSI预测,预测和测量的CSI之间的平均差异率(ADR)可达2.650-3.457%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号