首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Spatial Task Assignment Based on Information Gain in Crowdsourcing
【24h】

Spatial Task Assignment Based on Information Gain in Crowdsourcing

机译:众包中基于信息增益的空间任务分配

获取原文
获取原文并翻译 | 示例

摘要

Spatial crowdsourcing provides workers for performing cooperative tasks considering their locations, and is drawing much attention with the rapid development of mobile Internet. The key techniques in spatial crowdsourcing include worker-mobitlity-based task matching for more information gain and efficient cooperation among coworkers. In this paper, we first propose information gain based maximum task matching problem, where each spatial task needs to be performed before its expiration time and workers are moving dynamically. We then prove it is a NP-hard problem. Next, we propose two approximation algorithms: greedy and extremum algorithms. In order to improve the time efficiency and the task assignment accuracy, we further propose an optimization approach. Subsequently, for complex spatial tasks, we propose a feedback-based cooperation mechanism, model the worker affinity and the matching degree between a task and a group of coworkers, and design a feedback-based assignment algorithm with group affinity. We conducted extensive experiments on both real-world and synthetic datasets. The results demonstrate that our approach outperforms related schemes.
机译:空间众包使员工可以根据自己的位置执行协作任务,并且随着移动Internet的快速发展引起了人们的极大关注。空间众包中的关键技术包括基于工作人员流动性的任务匹配,以获取更多的信息,以及同事之间的有效合作。在本文中,我们首先提出基于信息增益的最大任务匹配问题,其中每个空间任务都需要在其到期时间之前执行,并且工作人员会动态移动。然后我们证明这是一个NP难题。接下来,我们提出两种近似算法:贪婪算法和极值算法。为了提高时间效率和任务分配精度,我们进一步提出了一种优化方法。随后,对于复杂的空间任务,我们提出了一种基于反馈的协作机制,对工作人员亲和力和任务与一组同事之间的匹配程度进行建模,并设计了一种基于反馈的群体亲和力分配算法。我们对真实数据集和合成数据集进行了广泛的实验。结果表明,我们的方法优于相关方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号