首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Privacy-Aware Task Allocation and Data Aggregation in Fog-Assisted Spatial Crowdsourcing
【24h】

Privacy-Aware Task Allocation and Data Aggregation in Fog-Assisted Spatial Crowdsourcing

机译:雾辅助空间众包中的隐私感知任务分配和数据聚合

获取原文
获取原文并翻译 | 示例

摘要

Spatial crowdsourcing (SC) enables task owners (TOs) to outsource spatial-related tasks to a SC-server who engages mobile users in collecting sensing data at some specified locations with their mobile devices. Data aggregation, as a specific SC task, has drawn much attention in mining the potential value of the massive spatial crowdsensing data. However, the release of SC tasks and the execution of data aggregation may pose considerable threats to the privacy of TOs and mobile users, respectively. Besides, it is nontrivial for the SC-server to allocate numerous tasks efficiently and accurately to qualified mobile users, as the SC-server has no knowledge about the entire geographical user distribution. To tackle these issues, in this paper, we introduce a fog-assisted SC architecture, in which many fog nodes deployed in different regions can assist the SC-server to distribute tasks and aggregate data in a privacy-aware manner. Specifically, a privacy-aware task allocation and data aggregation scheme (PTAA) is proposed leveraging bilinear pairing and homomorphic encryption. PTAA supports representative aggregate statistics (e.g., sum, mean, variance, and minimum) with efficient data update while providing strong privacy protection. Security analysis shows that PTAA can achieve the desirable security goals. Extensive experiments also demonstrate its feasibility and efficiency.
机译:空间众包(SC)使任务所有者(TO)可以将与空间相关的任务外包给SC服务器,后者使移动用户与他们的移动设备一起在某些指定位置收集传感数据。数据聚合作为一项特殊的SC任务,在挖掘海量空间众筹数据的潜在价值时引起了很多关注。但是,SC任务的释放和数据聚合的执行可能分别对TO和移动用户的隐私构成相当大的威胁。此外,由于SC服务器不了解整个地理用户分布,因此SC服务器向合格的移动用户有效且准确地分配大量任务并非易事。为了解决这些问题,在本文中,我们介绍了一种雾辅助的SC架构,其中,部署在不同区域的许多雾节点可以帮助SC服务器以隐私感知的方式分发任务和聚合数据。具体而言,提出了一种利用双线性配对和同态加密的隐私感知任务分配和数据聚合方案(PTAA)。 PTAA通过有效的数据更新支持代表性的汇总统计数据(例如,总和,均值,方差和最小值),同时提供强大的隐私保护。安全分析表明,PTAA可以实现理想的安全目标。大量的实验也证明了其可行性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号