首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >When Crowd Meets Big Video Data: Cloud-Edge Collaborative Transcoding for Personal Livecast
【24h】

When Crowd Meets Big Video Data: Cloud-Edge Collaborative Transcoding for Personal Livecast

机译:当人群遇到大视频数据时:用于个人直播的云边缘协作转码

获取原文
获取原文并翻译 | 示例

摘要

Deep penetration of personal computing devices and high-speed Internet has enabled everyone to be a broadcaster. In this crowdsourced live streaming service, numerous amateur broadcasters lively stream their video contents to viewers around the world. Consequently, these broadcasters generate a massive amount of video data. The set of video sources and recipients are big as well, so are demand for the storage and computational resources. Transcoding becomes a must to better service these viewers with different network and device configurations. However, the massive amount of video data contributed by countless channels even makes cloud significantly expensive for providing transcoding services to the whole community. In this paper, inspired by the paradigm of Edge Computing, we propose a Cloud-edge collaborative system which combines the idle end-viewers' resources with the cloud to transcode the massive amount of videos at scale. Specifically, we put forward tailored viewer selection algorithms after empirically analyses the viewer behavior data. In the meantime, we propose auction-based payment schemes to motivate these viewers participating in the transcoding. Large-scale trace-driven simulations demonstrate the superiority of our approach in cost reduction and service stability. We further implement a prototype in PlanetLab to prove the feasibility of our design.
机译:个人计算设备和高速互联网的深入普及使每个人都可以成为广播公司。在这项众包的实时流媒体服务中,众多业余广播公司将其视频内容流式传输给世界各地的观众。因此,这些广播公司产生了大量的视频数据。视频源和接收者的集合也很大,因此对存储和计算资源的需求也很大。转码成为必须以不同的网络和设备配置更好地服务于这些查看器的必须。但是,无数渠道贡献的大量视频数据甚至使云计算为整个社区提供转码服务的成本变得非常昂贵。在本文中,受边缘计算范式的启发,我们提出了一种云边缘协作系统,该系统将空闲的最终观看者的资源与云结合起来,以大规模地对大量视频进行转码。具体来说,我们在对观众行为数据进行实证分析之后,提出了量身定制的观众选择算法。同时,我们提出了基于拍卖的付款方案,以激励这些观看者参与转码。大规模跟踪驱动的仿真证明了我们的方法在降低成本和服务稳定性方面的优势。我们进一步在PlanetLab中实现了原型,以证明我们设计的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号