首页> 外文期刊>NDT & E international >Low frequency acoustic and ultrasound waves to characterise layered media
【24h】

Low frequency acoustic and ultrasound waves to characterise layered media

机译:低频声波和超声波表征层状介质

获取原文
获取原文并翻译 | 示例
       

摘要

Poor penetration and excessive absorption of high frequencies limit spectroscopic approaches using fast rise pulses for inspecting many engineered structures. So, this study focused on the alternative application of low frequency acoustic and ultrasound waves for the characterisation of challenging structures in airborne and waterborne environments. A simple, transfer matrix model approach was developed for the simulation of 1D sound propagation through layered media that comprise many engineered structures. This model was used to test the feasibility of using sound waves for non-destructive characterisation of an articulated lorry transported trailer and offshore foundation infrastructure. The targets were not in contact with the sound sensors and incorporated highly attenuating layers with acoustic contrasts to the surrounding medium that result in over 90% reflection of incident wave pressure. In both cases, resonances controlled by the thicknesses and interval velocities of component layers modulated sound reflection from, and transmission through the whole structure. These effects were observed as local maxima and minima in the spectra of the transmission and reflection coefficients. These spectral coefficients also determined the modulation to the temporal envelope of a linear frequency modulated pulse used to insonify the targets. In the acoustic study, which comprised only theoretical modelling, discrimination of differing cargo widths and between solid versus empty cargo trailers was possible using the transmission coefficient. In the ultrasound study, which comprised theoretical modelling and experimental testing, discrimination of differing steel and concrete substructure thicknesses and also of gaps between them was possible using the reflection coefficient. The model outcomes indicated while an acoustic system would require around 90–100 dB of dynamic range, an ultrasound system would only require around 40 dB to be effective.
机译:高频的穿透力差和吸收过多限制了使用快速上升脉冲检查许多工程结构的光谱方法。因此,本研究集中于低频声波和超声波的替代应用,以表征机载和水载环境中具有挑战性的结构。开发了一种简单的传递矩阵模型方法,用于模拟通过包含许多工程结构的分层介质传播的一维声音。该模型用于测试将声波用于铰接式货车运输的拖车和海上基础设施的非破坏性表征的可行性。目标没有与声音传感器接触,并包含了高度衰减的层,与周围介质形成了声学对比,从而导致入射波压力反射超过90%。在这两种情况下,由组成层的厚度和间隔速度控制的共振会调制声音从整个结构的反射和传播。在透射系数和反射系数的光谱中,观察到这些效应是局部最大值和最小值。这些频谱系数还确定了用于对目标进行声处理的线性调频脉冲对时间包络的调制。在仅包含理论模型的声学研究中,可以使用传输系数来区分不同的货物宽度以及固体和空载拖车之间的区别。在包括理论建模和实验测试的超声研究中,利用反射系数可以区分不同的钢和混凝土子结构厚度以及它们之间的间隙。模型结果表明,虽然声学系统将需要大约90–100 dB的动态范围,而超声系统将仅需要大约40 dB的有效范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号