...
首页> 外文期刊>Nature >Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline
【24h】

Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline

机译:CRISPR-Cas9在雌性小鼠种系中介导的超孟德尔遗传

获取原文
获取原文并翻译 | 示例

摘要

A gene drive biases the transmission of one of the two copies of a gene such that it is inherited more frequently than by random segregation. Highly efficient gene drive systems have recently been developed in insects, which leverage the sequence-targeted DNA cleavage activity of CRISPR-Cas9 and endogenous homology-directed repair mechanisms to convert heterozygous genotypes to homozygosity(1-4). If implemented in laboratory rodents, similar systems would enable the rapid assembly of currently impractical genotypes that involve multiple homozygous genes (for example, to model multigenic human diseases). To our knowledge, however, such a system has not yet been demonstrated in mammals. Here we use an active genetic element that encodes a guide RNA, which is embedded in the mouse tyrosinase (Tyr) gene, to evaluate whether targeted gene conversion can occur when CRISPR-Cas9 is active in the early embryo or in the developing germline. Although Cas9 efficiently induces double-stranded DNA breaks in the early embryo and male germline, these breaks are not corrected by homology-directed repair. By contrast, Cas9 expression limited to the female germline induces double-stranded breaks that are corrected by homology-directed repair, which copies the active genetic element from the donor to the receiver chromosome and increases its rate of inheritance in the next generation. These results demonstrate the feasibility of CRISPR-Cas9-mediated systems that bias inheritance of desired alleles in mice and that have the potential to transform the use of rodent models in basic and biomedical research.
机译:基因驱动器偏向于基因两个副本之一的传递,因此与通过随机分离相比,它更容易被遗传。最近在昆虫中开发了高效的基因驱动系统,该系统利用CRISPR-Cas9的序列靶向DNA切割活性和内源性同源指导的修复机制将杂合基因型转化为纯合性(1-4)。如果在实验室啮齿动物中实施,类似的系统将能够迅速组装涉及多个纯合基因的当前不切实际的基因型(例如,为人类多基因疾病建模)。据我们所知,这种系统尚未在哺乳动物中得到证实。在这里,我们使用一种活性遗传元件编码一个嵌入小鼠酪氨酸酶(Tyr)基因中的引导RNA,以评估当CRISPR-Cas9在早期胚胎或发育中的种系中有活性时是否可以发生靶向的基因转化。尽管Cas9在早期胚胎和雄性种系中有效诱导了双链DNA断裂,但是这些断裂不能通过同源性定向修复来纠正。相比之下,限于雌性种系的Cas9表达诱导了双链断裂,该双链断裂可通过同源性定向修复进行校正,从而将活性遗传元件从供体复制到受体染色体,并在下一代中提高了遗传率。这些结果证明了CRISPR-Cas9介导的系统的可行性,该系统可偏向小鼠中所需等位基因的遗传,并具有在基础和生物医学研究中改变啮齿动物模型用途的潜力。

著录项

  • 来源
    《Nature 》 |2019年第7742期| 105-109| 共5页
  • 作者单位

    Univ Calif San Diego, Tata Inst Genet & Soc, La Jolla, CA 92093 USA;

    Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA;

    Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA;

    Natl Univ Singapore, Dept Med, Singapore, Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号