首页> 外文期刊>Nature >Observation of entanglement between a quantum dot spin and a single photon
【24h】

Observation of entanglement between a quantum dot spin and a single photon

机译:量子点自旋与单个光子之间的纠缠观察

获取原文
获取原文并翻译 | 示例
       

摘要

未来的量子网络将把处于静止状态的量子位rn(如单电子自旋)与“飞行”的量子位(在远距rn离量子位之间转移量子态的光子)理想地结合rn在一起。因此,量子计算和通信领域一个长期rn未能解决的挑战便是,在一个固体平台上将一rn个单电子自旋耦合到一个单光子上。现在,两rn个独立工作的小组通过演示束缚在一个半导体rn“量子点”结构中的一个光子和一个单电子自rn旋之间的纠缠实现了这一目标。该量子点起静rn止节点的作用。这一成果是向最终实现能够进rn行远距离量子通信的量子网络的目标所迈出的rn一小步。%Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.
机译:未来的量子网络将把处于静止状态的量子位rn(如单电子自旋)与“飞行”的量子位(在远距rn离量子位之间转移量子态的光子)理想地结合rn在一起。因此,量子计算和通信领域一个长期rn未能解决的挑战便是,在一个固体平台上将一rn个单电子自旋耦合到一个单光子上。现在,两rn个独立工作的小组通过演示束缚在一个半导体rn“量子点”结构中的一个光子和一个单电子自rn旋之间的纠缠实现了这一目标。该量子点起静rn止节点的作用。这一成果是向最终实现能够进rn行远距离量子通信的量子网络的目标所迈出的rn一小步。%Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.

著录项

  • 来源
    《Nature》 |2012年第7424期|p.426-430a3|共6页
  • 作者单位

    Institute of Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland;

    Institute of Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland;

    Institute of Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland;

    Institute of Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland;

    Institute of Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号