...
首页> 外文期刊>Nature >Two independent transcription initiation codes overlap on vertebrate core promoters
【24h】

Two independent transcription initiation codes overlap on vertebrate core promoters

机译:两个独立的转录起始码在脊椎动物核心启动子上重叠

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase Ⅱ remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression, and determined the positions of H3K4me3-marked promoter-associated nucleosomes. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleo-tide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.%脊椎动物胚胎发生期间的"母型-合子型过渡"(MZT)是转录组的一个巨大变化,这个时候合子基因组被激发,母型转录体被降解。这项研究以核苷酸分辨率标绘出了斑马鱼MZT期间所使用的转录起始点,显示从母型向合子型转录组的过渡以两个不同启动子序列信号之间的切换为特征。RNA转录的起始位置由母型阶段的一个富含A/T的主题和合子中具有根本性区别的代码决定。这两个转录起始点在核心启动子内经常是共存的,甚至还会重叠,同时在卵母细胞和胚胎内都活跃的启动子上,它们是被差异化利用的。
机译:核心启动子是围绕转录起始位点(TSS)的DNA片段,它整合了调节输入并募集一般转录因子来启动转录。 DNA序列和染色质信号控制RNA聚合酶Ⅱ选择大多数TSS的性质和因果关系尚未得到解决。母体向合子的过渡代表了脊椎动物生命周期中转录组库中最明显的变化。斑马鱼的早期胚胎发育的特征是一系列由遗传的母体基因产物调控的转录沉默细胞周期:合子基因组激活始于第十个细胞周期,标志着囊胚中期过渡。这种过渡为研究TSS选择规则和将转录起始与关键染色质修饰联系起来的事件层次提供了独特的机会。我们使用基因表达的上限分析,以高分辨率解析了斑马鱼早期胚胎发育过程中的TSS使用情况,并确定了H3K4me3标记的启动子相关核小体的位置。在这里,我们显示了从母体转录子到合子转录子的过渡,其特征在于定义转录起始的两种根本不同的模式之间的转换,这驱动了TSS使用和启动子形状的动态变化。需要A / T丰富(W-box)母题的特定于母体的TSS选择被合子TSS选择语法取代,其特征在于更广泛的二核苷酸富集模式,与第一个下游(+1)精确对齐核小体。 H3K4me3标记的核小体的发育动力学揭示了它们在合子转录之前在启动子上的DNA序列相关定位,以及随后的转录独立调节至合子TSS下游的最终位置。两种TSS定义语法在组成性表达基因的核心启动子中共存,通常在物理上重叠,以使其能够在两种调节环境中表达。重叠的核心启动子决定子的解剖代表了一个跨框架的未来研究启动子结构和功能的研究框架。%突变发生期间的“母型-合子型过渡”(MZT)是转录组的一个巨大变化,这个当时合子基因组被激发,母型转录体被降解。研究以核苷酸分辨率标绘出斑马鱼MZT期间所使用的转录起始点,显示从母型向合子型转录组的过渡以两一个不同的启动子序列信号之间的切换为特征。RNA转录的起始位置由母型阶段的一个进入A / T的主题和合子中具有根本性区别的代码决定。这两个转录起始点在核心启动子内经常是共存的,甚至会重叠,同时在卵母细胞和重组内都活跃的启动子上,它们是被差异化利用的。

著录项

  • 来源
    《Nature》 |2014年第7492期|381-385b3|共6页
  • 作者单位

    Department of Biology, University of Bergen, Thormohlensgate 53A, N-5008 Bergen, Norway,Institute of Clinical Sciences and MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK;

    School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;

    School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;

    RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan;

    Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormohlensgate 55. N-5008 Bergen, Norway,German Cancer Research Center (DKFZ), Genomics & Proteomics Core Facility (GPCF), Im Neuenheimer Feld 580/TP3, Heidelberg 69120, Germany;

    Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormohlensgate 55. N-5008 Bergen, Norway,Broegelmann Research Laboratory, The Gade Institute, University of Bergen, The Laboratory Building, Haukeland University Hospital, N-5021 Bergen, Norway;

    School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK,Acquifer AG, Sophienstrasse 136, 76135 Karlsruhe, Germany;

    Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormohlensgate 55. N-5008 Bergen, Norway,Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;

    Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormohlensgate 55. N-5008 Bergen, Norway,Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland;

    RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan;

    Erasmus Medical Center, Center for Biomics, Room Ee679b, Dr Molewaterplein 50,3015 GE Rotterdam, The Netherlands;

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany;

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany;

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany;

    RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan;

    School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;

    Institute of Clinical Sciences and MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK,Department of Informatics, University of Bergen, Thormohlensgate 55, N-5008 Bergen, Norway;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号